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Abstract. A new and unique method of timing property exploration
based on the formal specification notation VDM++ is presented. It is
explained how the VDM++ notation and tool support has been adapted
to enable a pragmatic approach to detect potential timing bottlenecks
with a software design before expensive commitment to an efficient im-
plementation is made. The approach is explained both informally and
semantically, and an example is presented.

1 Introduction

A key problem when developing software for real-time systems is judging whether
a design has the real-time behaviour required by the overall system. That is,
judging whether the design will be able to meet the physical deadlines imposed
by the system and its environment. In practice it is often only possible to make
this judgement once an implementation is available: if during testing the imple-
mentation fails to meet any deadlines, then the design must be revisited and
implementation repeated. Thus, exploration of timing properties occurs late in
the development process.

This paper describes an approach intended to allow exploration of timing
properties at an earlier stage in the development process than implementation.
The approach described extends the existing pragmatic approach to formal mod-
elling advocated by IFAD [2], in which formal models are validated by execu-
tion. The extension described in this paper allows accumulation of information
concerning real-time behaviour during execution of models. This information
may then be analyzed separately to allow analysis of the cumulative real-time
behaviour of the model. The approach may be customized according to the exe-
cution environment (processor, real-time kernel) intended for use by the actual
system.

This paper is organized as follows: in the next section the notation VDM++
and its supporting tools are introduced. After that the details of the approach
to timing property exploration are presented. In Section 4 an example is given,

? The approach described in this paper was developed as part of the ESPRIT project
number 27618 “VICE: VDM++ In a Constrained Environment”.



illustrating the approach. Following this a comparison to other approaches is
given, and finally some conclusions are presented.

Note that when talking in general about quantities of time, the term time
unit is used. However for specific examples, units of time relevant to the example
are used (e.g. milliseconds). Throughout the text, portions of formal specification
are presented with grey background to distinguish from the main body of the
text.

2 The Formal Notation VDM++

The formal notation VDM++ is an object-oriented, model-based specification
language, and is largely a superset of the ISO standardized notation VDM-SL
[11]. VDM++ was originally developed in the ESPRIT project called AFRODITE
[1] and subsequently improved by IFAD. This notation is supported by the IFAD
VDM++ Toolbox [6]. It provides a precise, unambiguous basis for analysis of
requirements and allows early validation through testing and debugging. In this
way it is possible to bring testing activities forward to the specification phase of
the development life-cycle.

2.1 The VDM++ Notation

In VDM++ a complete formal specification consists of a collection of class spec-
ifications. A class specification has the following components:

Class header: This contains the class name declaration and inheritance infor-
mation (single or multiple).

Types: Definitions of any types used in the class.
Values: Definitions of constant values.
Instance variables: The state of an object consists of variables which can be

of simple types, VDM-SL types such as sets, sequences and maps, and object
references (the clientship relation). Instance variables can have invariant and
initial expressions.

Operations: Class methods that may be defined implicitly, explicitly (through
imperative statements), or as a mixture of both. The implicit style uses pre
and post condition expressions in the VDM-SL syntax.

Functions: Functions are similar to operations except that the body of a func-
tion is an expression rather than a statement. Also, functions are not allowed
to refer to instance variables.

Synchronization: Operation invocation is defined with the Rendez-Vous se-
mantics. It is possible to specify the circumstances in which an operation
may be executed using a permission predicate for the operation. This predi-
cate is over the instance variables of the object.

Thread: In VDM++ active objects are considered to model active world enti-
ties. An object can be made active by the specification of a thread. A thread
is a sequence of statements which are executed to completion, at which point
the thread dies.



2.2 The IFAD VDM++ Toolbox

The IFAD VDM++ Toolbox is a comprehensive suite of tools for the analysis
and validation of formal models described in VDM++. Currently the following
features are supported: syntax and type checking of models; execution of models
using an integrated symbolic interpreter; debugging of models using breakpoints
and stepping through the model; execution of thread-based models; automatic
generation of UML models in Rational Rose from VDM++ models, and vice
versa, as well as merging of such heterogeneous UML/VDM++ models; auto-
matic generation of code from models, into C++ or Java; pretty-printing us-
ing Microsoft Word or LaTeX; output of formatted document, with colouring
based on test coverage, incorporation of tables containing percentage coverage;
CORBA-compliant API allowing interaction with tools from other applications.

2.3 Extensions to the VDM++ Technology for Concurrent
Real-Time Systems

As well as the extension described in Section 3, a few additions to the VDM++
notation have been implemented: a threadid expression, denoting the unique
identifier number of the thread currently executing; a mutex directive for use
in permission predicates; the introduction of periodic threads i.e. threads that
perform some operation with fixed frequency; introduction of access modifiers
(public, private and protected) for class members.

All of these extensions to the VDM++ notation are supported by the VDM++
Toolbox. Note that in the case of periodic threads, a notion of time is required,
and thus the extensions described in Section 3 are a prerequisite.

3 Timing Approach

In this section we describe the approach to timing analysis supported using the
VDM++ Technology.

3.1 Objectives

The main objective of the approach described here is to get early feedback on
the suitability of a particular dynamic architecture. Here the term dynamic
architecture refers to the mapping of computations to threads. Suitability refers
to the absence of the following properties:

– Periodic threads missing deadlines;
– Deadlocks in the model;
– Missed system deadlines (hard or soft).

(Note the distinction here between missed system deadlines and periodic threads
missing their deadlines: the former is an externally visible property, whereas the



latter is an internal property of the design, which may or may not lead to missed
system deadlines.)

The approach is pragmatic because the objective is to provide feedback rather
than formal guarantees of the kind usually obtained by formal verification. In
particular, it is desired that timing-related problems be identified during the
specification and design phases, rather than during target integration testing,
where such problems are currently found.

Note that currently the approach assumes a single processor target. Therefore
for the remainder of this paper, it is assumed that the target consists of a single
processor (referred to as the target processor) controlled by a real-time kernel
(referred to as the target kernel). However there is no reason in principal why
the approach could not be extended to multiprocessor targets.

3.2 Overview of Approach

The basic idea of the approach is to simulate the timing behaviour of the target
processor within the IFAD VDM++ Toolbox interpreter. To achieve this the
interpreter maintains an internal variable which corresponds to the clock of the
target processor i.e. the clock of the target processor is simulated. The interpreter
adopts the same scheduling algorithm as that used by the target kernel. During
execution of the model a number of events will occur: swapping in and out
of threads; and operation requests, activations and completions. We call such
events, trace events. For the purposes of this paper we restrict our interest to
the swapping in and out of threads.

Each trace event is logged in a trace file, with the simulated time at which
the event occurred. The simulated time is the reading of the clock on the target
processor as recorded by the interpreter when the event occurred. The simulated
time is incremented during execution and thread swapping by the interpreter.
There are three ways in which this is performed:

– Selected portions of the model may be enclosed within duration statements
(described in detail in Section 3.5). These give the execution duration in sim-
ulated time for that portion of the model. This duration is used to increment
simulated time.

– Worst-case analysis is used for portions of the model that are not covered by
duration statements. This is calculated specifically for the target processor,
using the default duration information. The default duration information is
a file containing the execution duration in simulated time for elementary
assembly instructions on the target processor. The values yielded by this
worst-case analysis are then used to increment simulated time.

– When a thread is switched out and another thread is switched in, simulated
time is incremented by the task switching overhead. This is a user-definable
value, allowing simulation of the time taken to switch tasks in the target
kernel.

An overview of the approach is given in Figure 1.
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Fig. 1. Overview of Approach

3.3 Semantics

In this section we give a semantic description of the basic timing approach (i.e.
we do not consider duration statements here). The semantics presented are at
a high level of abstraction, and are presented in VDM-SL. The presentation is
described independent of the scheduling algorithm used, so information relevant
for scheduling (e.g. thread priority) is not needed here.

At an abstract level we can think of a thread as a sequence of statements:

Thread = seq of TimedStmt;

A timed statement consists of a constituent statement, and its execution
duration (in simulated time on the target processor).

TimedStmt :: stmt : Stmt

dur : nat;

The execution duration is calculated statically using worst-case analysis on
the text of the statement. The issue of the coarseness of this calculation is ad-
dressed in Section 3.5.

For our current purposes the only property we require of statements is being
able to distinguish them. Thus:

Stmt = token;

The objective of a semantic description is to capture the possible traces
that might occur when several threads are executed concurrently on a single
processor. It is sufficient to consider the case in which two threads are executed
concurrently; the general case follows from this case. Note that it is not possible
to statically ascertain the specific trace that would be generated.

A trace is a sequence of trace elements; a trace element represents an unin-
terrupted execution on the processor, with the times at which execution began
and ended:



Trace = seq1 of TraceElement

inv tr == forall i, j in set inds tr &

i < j => tr(i).switchedOut < tr(j).switchedIn;

TraceElement :: stmts : seq1 of Stmt

switchedIn : nat

switchedOut : nat

inv mk_TraceElement(-, si, so) == si <= so;

The semantics of a particular pairwise interleaving is then given by the func-
tion Interleave. This takes a pair of threads and the task switching overhead,
and returns the set of possible traces for this pair.

This function works recursively:

If either thread has no statements left to execute the other thread is ex-
ecuted continuously to make exactly one trace;

Otherwise the first statement is taken from each thread, and the interleav-
ings for the remaining parts of the threads are recursively calculated. The
first statement is then added to each trace so generated, with times offset
accordingly.

Interleave : Thread * Thread * nat -> set of Trace

Interleave(t1, t2, ts) ==

if t1 = [] then MakeOneTrace(t2)

elseif t2 = [] then MakeOneTrace(t1)

else let i1 = Interleave(tl t1, t2, ts),

i2 = Interleave(t1, tl t2, ts) in

let i1_start_t1 = { t | t in set i1 & FromThread(t1, t(1)) },
i1_start_t2 = { t | t in set i1 & FromThread(t2, t(1)) },
i2_start_t1 = { t | t in set i2 & FromThread(t1, t(1)) },
i2_start_t2 = { t | t in set i2 & FromThread(t2, t(1)) } in

AddPrefixToTraceSet(hd t1, i1_start_t1, ts) union

AddPrefixToTraceSet(hd t2, i2_start_t2, ts) union

AddOnePrefixToTraceSet(hd t1, i1_start_t2, ts) union

AddOnePrefixToTraceSet(hd t2, i2_start_t1, ts);

The function MakeOneTrace takes a thread and constructs a trace which
executes continuously on the processor:

MakeOneTrace : Thread -> set of Trace

MakeOneTrace(t) ==

{ [mk_TraceElement([t(i).stmt | i in set inds t], 0,

Sum( [t(i).dur | i in set inds t]))] };

Here the function Sum returns the sum of a sequence of natural numbers; its
definition is omitted for brevity.

The predicate FromThread delivers true iff a particular trace event corre-
sponds to a particular thread:



FromThread : Thread * TraceElement -> bool

FromThread(thread, te) ==

forall stmt in set elems te.stmts &

exists tstmt in set elems thread & stmt = tstmt.stmt

The function AddPrefixToTraceSet takes a timed statement tstmt, a set of
traces traces and a task switching overhead, and computes all possible traces
that can be made by executing tstmt first, and then continuing with a trace
from traces:

AddPrefixToTraceSet : TimedStmt * set of Trace * nat -> set of Trace

AddPrefixToTraceSet(tstmt, traces, ts) ==

AddOnePrefixToTraceSet(tstmt, traces, ts) union

{ AddPrefixToTrace(tstmt, trace) | trace in set traces };

The function AddOnePrefixToTraceSet adds a single trace element to all
the traces in the given set.

AddOnePrefixToTraceSet : TimedStmt * set of Trace * nat -> set of Trace

AddOnePrefixToTraceSet(tstmt, traces, ts) ==

let te = mk_TraceElement([tstmt.stmt], 0, tstmt.dur) in

{ [te] ^ Offset(trace, te.switchedOut + ts) | trace in set traces };

Here, the function Offset is used to perform a time shift in a trace:

Offset : Trace * nat -> Trace

Offset (trace, offset) ==

[ mk_TraceElement(trace(i).stmts, trace(i).switchedIn + offset,

trace(i).switchedOut + offset)

| i in set inds trace];

The function AddPrefixToTrace adds the given statement to the first trace
element in the given trace:

AddPrefixToTrace : TimedStmt * Trace -> Trace

AddPrefixToTrace(tstmt, trace) ==

let te = mk_TraceElement([tstmt.stmt] ^ trace(1).stmts,

trace(1).switchedIn,

trace(1).switchedOut + tstmt.dur) in

[te] ^ Offset(tl trace, tstmt.dur);

Having specified all possible traces, it would then be possible to specify differ-
ent scheduling algorithms as subsets of all possible traces. This is not presented
here for brevity.

3.4 Example

To illustrate the approach and the semantics presented in the preceding section,
consider a model in which two threads are executing concurrently:



Thread 1 (s1;
s2)

Thread 2 (t1;
t2;
t3)

Here, s1, s2, t1,t2 and t3 are VDM++ statements. According to the model
and the scheduling policy a number of different interleavings are possible. We
consider the the interleaving shown in Table 1.

s1;
Thread 2 switched in
t1;
t2;
Thread 1 switched in
s2;
Thread 2 switched in
t3;

Table 1. Example Interleaving

Statement Time
s1 10
s2 20
t1 30
t2 20
t3 40

Table 2. Worst-case Execution Times

For the purposes of this example, suppose that using worst case analysis
based on default timing behaviour for the target architecture, the execution
times shown in Table 2 are computed for the statements. Suppose further that
the user specifies the task switching overhead to be 5 time units.

The trace unfolds as follows. Following execution of statement t1, thread
1 is switched in. It has execution time of 30, so including the task switching
overhead, statement s1 is executed at time 35. After executing s1 thread 2 is
switched in again. Now the time is 50 time units. When t2 has been completed
the time is 70. When the execution of s2 then starts 75 time units have passed.
Finally when s2 has completed and t3 is ready to start in thread 2 the time will
be 100 and after the execution of t3 the time will be 140 time units.

We can represent this interleaving diagrammatically:

Execution -

t1;(30)
-

s1;(10)
-

t2;(20)
-

s2;(20)
-

t3;(40)

35 50 75 100 140Event time

In this diagram, arrows represent statements executed sequentially from a
single thread before an event occurs, and the figure in brackets following the
statement is the calculated execution time for that statement. Note that in the
trace file only the events and the times at which they occurred will be logged.
Recall that an event is a switch in or out of a thread, or a request, activation or
completion of an operation call.



3.5 Duration Statements

The approach described in Sections 3.2, 3.3 and 3.4 allows exploration and anal-
ysis of the timing behaviour of a VDM++ model. However the use of worst-case
analysis for statically computing statement execution durations gives crude,
coarse values for simulated time. Moreover in many situations, from existing
knowledge and experience it is known how long a particular algorithm takes to
execute on a particular processor.

To remedy this situation, to the existing statements of VDM++, a new
statement has been added: the duration statement.

duration statement = duration(numeral) statement

A duration is an estimate of how much time a particular portion of a VDM
model will take to execute, in the implementation, on the target processor. The
information provided by a duration statement is used to override the default
execution time calculated for that portion.

The duration statement offers a number of benefits: timing analysis can be
made more precise; different durations for portions of a model can be experi-
mented with interactively; and portions of the model which would not actually
consume processor time (e.g. any parts of the environment which have been
modelled) can be enclosed within a duration(0) statement.

3.6 Semantics of Durations

The essential difference introduced by durations relates to the simulated execu-
tion time of portions of the model; in Section 3.3 this time is statically calculated
for each statement. With the introduction of durations, this execution time can
no longer be statically ascertained (for instance, an operation call could occur
within a duration statement). A fully formal semantic description is beyond the
scope of this paper (though such a semantic description does exist: see Sec-
tion 3.8). Instead in this section we give an informal description of the semantics
of durations.

The execution time for a statement is ascertained dynamically, as follows:

If the statement is not in the scope of a duration statement
The default value for that particular target architecture, as calculated using
worst case analysis using default timing behaviour for the target architecture.

If the statement is in the scope of a duration statement
If this is statement si from a block s1, . . . , sn which is bound by the duration
statement duration t, then the execution time for this statement is zero if i is
less than n. If i equals n the execution time is the time of the entire duration
statement. That is, the time will not be incremented before the entire du-
ration statement is completed. This is a coarse approximation if a thread is
interrupted in the middle of execution of the body of a duration statement.
This will only pose a problem if a pre-emptive scheduling algorithm is used;
if such problems arise, finer-grained duration statements may be used.



3.7 Example with Duration Statements

Consider again the model from Section 3.4, this time endowed with duration
statements in thread 2.

Thread 1 (s1;
s2)

Thread 2 duration (20)(
t1;
t2);

duration (10) t3

Using the same interleaving, default times, and task switching overhead as
previously the trace would evolve as follows:

Following execution of statement t1, thread 1 is switched in. However, since
t1 is inside the body of a duration statement the time is not yet incremented.
Thus including the task switching overhead, statement s1 is executed at time
5. After executing s1 thread 2 is switched in again. Now the time is 20 time
units. When t2 has been completed the entire body of the duration statement
in thread 2 is completed and thus the 20 time units from the duration statement
is added. When the execution of s2 then starts 45 time units has passed. Finally
when s2 has completed and t3 is ready to start in thread 2 the time will be 70
and after the execution of t3 the time will be 80 time units.

We can represent this interleaving diagrammatically:

Execution -

t1;(0)
-

s1;(10)
-

t2;(20)
-

s2;(20)
-

t3;(10)

5 20 45 70 80Event time

3.8 Tool Support for Approach

As outlined in Section 3.2, an integral part of the approach described in this
paper is the tool support. To support this approach, the IFAD VDM++ Toolbox
has been extended in three ways:

– Support for duration statements within the syntax checker, type checker and
interpreter;

– Generation of timed trace files by the interpreter during model execution;
– Support for a variety of real-time features within the interpreter.

The real-time features provided include the following:

– A selection of scheduling algorithms (priority-based, cooperative and time
sliced amongst others).

– Customizable timing behaviour, in the sense that the static analysis used
to calculate worst-case execution times, is parametrized in terms of the ex-
ecution duration for standard assembly language instructions. The default
values for these durations can be overridden by providing a user-defined file
of these values;



– Customizable task switching overhead, allowing modelling of a variety of
real-time kernels, which typically have different task switching overheads to
each other;

– Time factor, allowing definition of a scalar which is used to multiply the
statically calculated execution times (duration statements are unaffected by
this). This allows investigation of different processor speeds etc.

Note that since the interpreter used within the IFAD VDM++ Toolbox is for-
mally specified in VDM-SL, the dynamic semantics of all of these features have
been formally specified.

3.9 Trace Analysis

The trace file generated during execution of a model is a plain text file, and is
therefore straightforward to manipulate and analyze. This means that standard
tools can be used to analyse runtime behaviour of the model. Two kinds of
analysis may be performed: generic and specific.

Generic trace analysis allows compilation of statistics that are meaningful
for all VDM++ models. This includes generating statistics about function calls
(average, minimum and maximum durations for each function), statistics about
processor utilization etc. Currently a collection of Perl scripts has been writ-
ten which take as input a trace file and generate Microsoft Excel spreadsheets
showing such statistics.

Specific trace analysis refers to analysis intrinsic to the model being executed.
This might be visualization of the trace file using symbols or icons meaningful
in the context of the system being modelled. An example of this is given in
Section 4.3. An alternative kind of specific trace analysis is to frame requirements
on traces as predicates on sequences in VDM++. These can then be executed
against generated traces to check satisfaction of such requirements.

4 Example - A Counter Measures System

In this section an example application is presented illustrating the proposed
approach. The application to be modelled in VDM++ is the controller for a
missile counter-measures system. This takes information from sensors concern-
ing threats and sends commands to hardware which releases flares intended to
distract the threat sensed. The overall architecture is shown in Figure 2.

Threat
Information

Controller
Flare Release
Hardware

- -

Fig. 2. Overview of Counter Measures System

Flares are released in a timed sequence, the number of flares released and the
delay between releases depending on the threat and its angle of incidence with



the missile. The threat sensor relays the ID of the threat to the controller. For
each different kind of ID the controller must then derive a plan for how to deal
with the given threat by firing a sequence of flares with a given pattern. Such
a pattern contains the number of flares to be fired and the delay between each
firing. The task communicates the stated number of firings to the flare release
hardware with the specified delay between each communication.

-

Time

66︸︷︷︸
p1

6

p2

6 6︸︷︷︸
p3

6666︸︷︷︸
p4

6 6 6︸ ︷︷ ︸
p5

Fig. 3. Example Firing Sequence

An example firing sequence is shown in Figure 3. Flare release commands are
represented by the vertical arrows. Five actions are depicted in this figure. The
following requirements apply to this system:

1. If while computing the firing sequence for a given threat, another threat is
sensed, the controller should check the priority of the more recent threat and
if greater than the previous one should abort computation of the current
firing sequence. Computation of the new firing sequence should then take
place.

2. The controller should be capable of sending the first flare release command
within 250 milliseconds of receiving threat information from the sensor.

3. The controller should be able to abort a firing sequence within 130 millisec-
onds.

4.1 VDM++ Model

At the top level, the counter measures application consists of a MissileDetector
thread and a FlareController thread. In the model presented, there is also a
Sensor thread used for simulation purposes. The MissileDetector thread takes
information from the Sensor thread concerning missiles that have been sensed,
and passes instructions on to the FlareController thread. The FlareController
thread computes commands to be sent to flare control hardware. An overview
of this arrangement can be seen in the UML class diagram shown in Figure 4.

For brevity we only describe one class specification - the FlareController class
- in detail in this paper. The remaining classes are now described briefly:

SensorIO - a class used to read test data from a file. This file contains a specific
scenario i.e. a specific sequence of missiles arriving at different times.

Timer - a class representing a timer which can be used to block for a period
of time using its Alarm operation. The timer may be interrupted using its
Interrupt operation.



Fig. 4. Class Diagram for Counter Measures System

Sensor This contains the Sensor thread. It is used to model hardware which
would sense a missile. It uses the SensorIO class to acquire values for a
particular scenario. It uses an instance of the Timer class to simulate the
different arrival times of missiles.

MissileDetector This class contains the MissileDetector thread. It reads values
yielded by the Sensor thread, and passes these on to the FlareController
thread. It shares a Timer with the FlareController thread, which it uses to
interrupt the FlareController thread whenever a new missile is detected.

4.2 Specification of The Flare Controller

The job of the flare controller is to release a sequence of flares (a plan) corre-
sponding to the highest priority missile most recently detected.

class FlareController

First some types are defined. A Plan is a sequence of PlanSteps. A PlanStep
is a pair consisting of a flare to be released, and the amount of time between
this release and the next one. FlareType consists of some example flare values
used for testing.

types

Plan = seq of PlanStep;

PlanStep = FlareType * nat;

public FlareType = <FlareOneA> | <FlareTwoA> | <FlareOneB> |

<FlareTwoB> | <FlareOneC> | <FlareTwoC> |

<DoNothingA> | <DoNothingB> | <DoNothingC>;



A number of instance variables are defined:

missileDetectorRef a reference to the MissileDetector object.
timerRef a reference to a Timer, which is shared with the MissileDetector.

This allows the MissileDetector to wake the FlareController.
currentMissileValue this reflects the missile for which a plan is currently be-

ing executed. If no missile has been detected, the <None> value is used.
currentStep the index of the last PlanStep executed for the current Plan.
latestMissileValue the missile most recently read by the MissileDetector.
fresh is used to indicate whether latestMissileValue has only just been set,

or whether it was set some time previously.

Two instance variables are included just for modelling: outputSequence
records the actual flares that have been released; and noMoreMissiles indicates
when all of the missiles in the scenario have been detected.

instance variables

missileDetectorRef : MissileDetector;

timerRef : Timer;

currentMissileValue : [Sensor‘MissileType] := <None>;

currentStep : nat := 0;

latestMissileValue : Sensor‘MissileType := <None>;

fresh : bool := false;

outputSequence : seq of FlareType := [];

noMoreMissiles : bool := false;

The missileDetectorRef and timerRef are initialized using the operation
Init:

operations

public Init : MissileDetector * Timer ==> ()

Init(initMissileDetector, initTimer) ==

(missileDetectorRef := initMissileDetector;

timerRef := initTimer);

Two values are defined: responseDB gives the Plan for each missile that can
be detected, with values for testing purposes; and missilePriority gives the
relative priority of each missile. Note that since no Plan would be executed if
currentMissileValue is <None>, this value is not in the domain of responseDB.

values

responseDB : map Sensor‘MissileType to Plan =

{<MissileA> |-> [ mk_(<FlareOneA>,900), mk_(<FlareTwoA>,500),

mk_(<DoNothingA>,100), mk_(<FlareOneA>,500)],

<MissileB> |-> [ mk_(<FlareTwoB>,500), mk_(<FlareTwoB>,700)],

<MissileC> |-> [ mk_(<FlareOneC>,400), mk_(<DoNothingC>,100),

mk_(<FlareTwoC>,400), mk_(<FlareOneC>,500)]

};



missilePriority : map Sensor‘MissileType to nat

= {<MissileA> |-> 1, <MissileB> |-> 2,

<MissileC> |-> 3, <None> |-> 0}

The algorithm for the FlareController is described in its thread. This re-
peatedly does the following: it uses the operation StepAlgorithm to find the
next PlanStep (if any) to execute and release the flare in this plan step; then, if
a plan is being executed, timerRef is used to wait for the delay corresponding
to this PlanStep.

thread

while true do

( StepAlgorithm();

if currentMissileValue = nil

then noMoreMissiles := true

elseif currentMissileValue <> <None>

then let mk_(-, delay_val) =

responseDB(currentMissileValue)(currentStep-1)

in timerRef.Alarm(delay_val))

StepAlgorithm is used to update currentMissileValue if necessary (using
CheckFreshData) and release the next flare in the current plan (using StepPlan).
It blocks if there is no fresh missile detected and no plan is currently being
executed.
operations

StepAlgorithm : () ==> ()

StepAlgorithm() ==

(if fresh

then ( fresh := false;

CheckFreshData());

StepPlan());

sync

per StepAlgorithm => fresh = true or currentMissileValue <> <None>;

CheckFreshData checks whether the most recently detected missile (latest-
MissileValue) has higher priority than the one for which a plan is currently
being executed. If so, then the plan for this new missile is started and the previous
one abandoned.
operations

CheckFreshData : () ==> ()

CheckFreshData() ==

(if HigherPriority(latestMissileValue, currentMissileValue)

then StartPlan(latestMissileValue);

latestMissileValue := <None>);

HigherPriority : Sensor‘MissileType *

Sensor‘MissileType ==> bool

HigherPriority(latest, current) ==

return missilePriority(latest) > missilePriority(current);



StartPlan : Sensor‘MissileType ==> ()

StartPlan(newMissileValue) ==

(currentMissileValue := newMissileValue;

currentStep := 1);

The operation StepPlan is used to execute the next PlanStep. If we have
reached the end of the plan then currentMissileValue and currentStep are
reset; otherwise the flare to be released in this PlanStep is released and current-
Step is incremented.

StepPlan : () ==> ()

StepPlan() ==

if currentStep <= len responseDB(currentMissileValue)

then (let mk_(flare, -) = responseDB(currentMissileValue)(currentStep)

in ReleaseAFlare(flare);

currentStep := currentStep + 1)

else (currentMissileValue := <None>;

currentStep := 0);

The operation ReleaseAFlare corresponds to the physical action of releasing
a flare. It is known that 10 milliseconds are required for this action, so this is
specified using a duration statement.

ReleaseAFlare : FlareType ==> ()

ReleaseAFlare(ps) ==

duration(10)

(cases ps:

<FlareOneA> -> ReleaseFlareOneA(),

<FlareTwoA> -> ReleaseFlareTwoA(),

<FlareOneB> -> ReleaseFlareOneB(),

<FlareTwoB> -> ReleaseFlareTwoB(),

<FlareOneC> -> ReleaseFlareOneC(),

<FlareTwoC> -> ReleaseFlareTwoC(),

<DoNothingA> -> ReleaseFlareDoNothingA(),

<DoNothingB> -> ReleaseFlareDoNothingB(),

<DoNothingC> -> ReleaseFlareDoNothingC()

end;

outputSequence := outputSequence ^[ps]);

The specific ReleaseFlare... operations all have the same body as Release-
FlareOneA given below, and are therefore omitted for brevity. They are used
purely to allow identification of the different flares released in the trace file.

ReleaseFlareOneA : () ==> ()

ReleaseFlareOneA() == skip;

The operation MissileIsHere is used by the MissileDetector thread to in-
dicate detection of a new missile. Since it is executed by another thread, it
may execute concurrently with operations used by the FlareController thread.
Therefore to ensure integrity of instance variables, it is executed mutually ex-
clusively with CheckFreshData.



operations

public MissileIsHere : [Sensor‘MissileType] ==> ()

MissileIsHere(newMissileValue) ==

( if newMissileValue not in set {<None>, nil}
then fresh := true;

if newMissileValue = nil

then noMoreMissiles := true

else latestMissileValue := newMissileValue);

sync

mutex(MissileIsHere, CheckFreshData);

end FlareController

4.3 Execution Of The Specification

The counter measures model has been executed by the IFAD VDM++ Toolbox
using a number of different scenarios, and the resulting trace files analyzed. To
analyze the trace files, a program was written that takes as input a trace file and
visualizes the external events: in particular, two time lines were constructed, one
showing the times at which missiles were identified, and another showing the
times at which flares were released. An example is shown in Figure 5.

Fig. 5. Visualization of Counter Measures Trace

In the light of this visualization it is interesting to revisit the requirements
given in Section 4:



1. The mechanism for dealing with higher priority missiles is clearly working,
since when missile B arrives treatment of missile A is aborted, and when
missile C arrives treatment of missile B is aborted.

2. The controller sends out its first flare 158 milliseconds after the identification
of the first missile. This comfortably meets the deadline of 250 milliseconds.

3. Consideration of the third requirement - “The controller should be able to
abort a firing sequence within 130 milliseconds” reveals an ambiguity in the
requirements. From this statement, in the situation where a plan is being
executed and a higher priority missile arrives, it is not clear whether the first
flare in the new plan should be released within 130 milliseconds, or whether
it should be released within 130 + 250 milliseconds (including Requirement
2). If the former is the case, then the model does not meet the requirements;
if the latter then for this scenario the model satisfies these requirements.

This kind of visualization is particularly useful for communicating model be-
haviour with domain experts, who do not necessarily have knowledge of VDM++.

5 Comparison

Timed formalisms can be categorized into five broad categories. Those that are:
model-based (e.g. VDM++); process algebras (e.g. Timed CSP, [13]); based on
logics (e.g. RTL, [8] and DC, [18]); state-based (e.g. Timed Transition Systems,
[7], and Timed Automata, [3]); or net-based (e.g. HLTPNs, [4]). Each category
has it own characteristics, with attendant strengths and weaknesses. Logic-based
formalisms, for example, typically make few assumptions about a computational
model, while model-based formalisms such as VDM++ are often based upon a
specific model. As stated previously, VDM++’s computational model is a single
processor with threads which synchronize when they communicate (via method
invocations).

The advantage of generality must be traded against the complexity of having
to specify the desired model “from scratch” in each specification, along with the
attendant risk of failing to specifying the desired model correctly.

Here VDM++ is only briefly compared with three other model-based timed
formalisms: Real-Time Object-Z (RT-OZ); Timed RAISE Specification Lan-
guage (TRSL); and the Activity Description Language (ADL).

RT-OZ, [16], is a ‘dual language’ formalism which combines Object-Z with
the timed refinement calculus, [9]. RT-OZ extends Object-Z classes with an
extra part in which timed refinement calculus expressions can be placed. These
expression may refer to timed versions of the class attributes. Timed attributes
can also be defined and manipulated within the class itself, and the current time
can be accessed.

The declarative nature of RT-OZ makes it easier to specify directly the re-
quired timing properties than it is in VDM++. This, however, has the cost of
making animation of arbitrary RT-OZ specifications difficult, effectively denying
an important analysis technique that VDM++ supports.



TRSL, [17], is a minimal (but not conservative) extension to RSL, [5]: it
adds a wait expression, which takes a non-negative real as a parameter. Time in
TRSL is hence based on points, is continuous (actually, it is super-dense, [10]),
and linear, whereas time in VDM++ is based on points, discrete, and linear.
TRSL, like Timed CSP, adopts the maximal progress assumption. This can be
used to model systems which use scheduling, but is less convenient for directly
specifying the behaviour required, c.f. TAM, [14].

Time only elapses in I/O and wait expressions in TRSL. This is in contrast
with VDM++, where default timing values and duration statements define the
time elapse of any particular statement. The VDM++ approach is aimed at
being able to explore the temporal effects of engaging in complex computations.
The insertion of enough Wait statements in an TRSL specification could be used
to achieve this effect, but not as flexibly as in VDM++, where, for example, the
time of an assignment could be changed systematically across a specification.

ADL, [12], is a formal notation for defining the temporal and functional
behaviour of processes in Real-Time Networks, [15]. The “dynamic states” of the
ADL assign lower and upper time bounds to operations: effectively an extension
to the VDM++ duration statement which instead of assigning a single (actual)
time to a block of statement, assigns a best case execution time and a worse-case
response time. The ADL, however, cannot define time-bounds around arbitrary
sequences of statements.

The use of worse-case response times makes the ADL suitable for expressing
temporal constraints directly, and unlike VDM++, means that the ADL need
make no commitment to a particular scheduling or distribution approach. It
has a penalty, however, in making ADL specifications harder than VDM++
specifications to animate realistically. The most significant differences between
ADL and VDM++ are that one is compatible with real-time networks, and the
other with an object-oriented view of systems; and that VDM++ has commercial
tool support.

6 Concluding Remarks

In this paper we have presented a new approach for exploring timing properties
for models written in VDM++. This is a pragmatic approach which enables the
exploration of the timing characteristics in the design stage of the development
process. We believe that in particular the animation capabilities will be applica-
ble to many industrial real-time applications. In the VICE project we have used
a trial study with the development of a missile guidance control system through
the entire development process. Using the proposed approach a number of design
errors have been discovered and solved, at a much earlier stage than would have
been the case for a traditional development. Thus this study confirms our belief
in the applicability of this new approach.
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