An Executable Subset of Meta-IV with Loose
Specification®

Peter Gorm Larsen and Poul Bggh Lassen
The Institute of Applied Computer Science (IFAD)
Munkebjergvaenget 17, DK-5230 Odense M, Denmark
E-mail: peter@ifad.dk and poul@ifad.dk

Abstract

In ESPRIT project no. EP5570 called IPTES! a methodology and a supporting
environment for incremental prototyping of embedded computer systems is devel-
oped. As a part of this prototyping tool an interpreter for an executable subset of
a VDM dialect is developed. Based on a comparative study of different notations
inspired by VDM we have now selected an executable subset of the BSI/VDM-SL?
notation. This executable subset is interesting because it enables the designer to
use loose specification. None of the executable VDM dialects which we have inves-
tigated contain as large a part of looseness as our subset does. In this article we will
focus mainly on which constructs we have in this subset and how we have dealt with
the looseness. Furthermore we will sketch the connection between the semantics of
our subset and the semantics for the full BSI/VDM-SL.

1 Introduction

IPTES is an ESPRIT research project which aims at development of a methodology and
a supporting environment for incremental prototyping of embedded computer systems.
Initially a system is described by means of a high-level graphical specification and design
language SA/RT? (see [Ward&85]) where BSI/VDM-SL (also called Meta-IV) is used
in the so-called mini-specifications to specify sequential components. The SA/RT spe-
cifications are made executable by a transformation to high-level timed Petri nets (see
[Ghezzi&91]), while the mini-specifications are interpreted by an interpreter which is
going to conform to the operational semantics as described in this article. Parts of the
specification can then gradually be transformed towards actual code, and in this way

*The work reported here is partially sponsored by the CEC ESPRIT programme under contract no.
EP5570

'TPTES is an acronym for “Incremental Prototyping Technology for Embedded real-time Systems”.

2BSI/VDM-SL is an acronym for “British Standards Institution/Vienna Development Method Spec-
ification Language”. However, since the standardization effort is being carried forward within ISO it is
possible that in the future this language will just be called VDM-SL.

3SA/RT is an acronym for the “Structured Analysis Real Time extension”.

heterogeneous prototyping of the system can be performed. More information about the
IPTES architecture can be found in [Leon&91].

We have chosen to use an executable subset of the BSI/VDM-SL. This language is
developed in order to harmonize the different VDM dialects into one standard language.
This standardization effort is currently done under the auspices of BSI and ISO and it
involves the definition of a concrete syntax, an abstract syntax, a static semantics, and
a dynamic semantics (see [BSIVDM91]). We have taken these four parts as our starting
point and have selected a subset of BSI/VDM-SL with minor adjustments to make the
language fit the IPTES architecture.

An important quality of BSI/VDM-SL is that it contains constructs which can be
loosely specified. When a specification is deterministic it simply denotes one model (cor-
responding to the only valid implementation of the functionality of the specification).
When a specification is loose it denotes a set of models (corresponding to the different
valid implementations of the specification).

Our executable subset has an operational semantics (written using the complete ver-
sion of the BSI/VDM-SL notation). When a specification written in BSI/VDM-SL con-
tains looseness it will denote a set of possible models in the dynamic semantics. In our
operational semantics an arbitrary of these models is returned. The relation between the
dynamic semantics for BSI/VDM-SL and this operational semantics is further analysed
in this article.

After this introduction we will explain the notion of loose specification. We will then
present the constructs which we have selected for our subset. Then we will explain the
semantics of the subset and shortly compare it to the standard dynamic semantics. This
is followed by a few examples illustrating the expressiveness provided by the generality
of the patterns in our subset. After that, we will compare our approach to some of the
related work on executable subsets of VDM-SL. Finally we will give a few concluding
remarks and identify future work.

2 Loose Specification

Loose specification occurs if a specifier wants to express that it does not matter which
particular value an expression yields as long as it fulfills certain requirements. Thus, loose
specification arises because a specification generally needs to be stated at a higher level of
abstraction than that of the final code of the system. When loose specification is used, the
question of how to interpret this looseness is often ignored. However, the interpretation is
important, especially if a specification must be proven to implement another specification.

As shown in [Larsen&89], [Wieth89], and [Larsen90] there are at least two different
ways of interpreting such loose specifications. These two different interpretations have
been called ‘nondeterminism’ and ‘underdeterminedness’. When a loosely specified con-
struct is interpreted as underdetermined it denotes the set of all possible deterministic
implementations of that construct. If the same construct is interpreted as nondeterminis-
tic instead, it denotes the set of all possible implementations of that construct (including
the nondeterministic ones). In this work we have chosen to use the underdetermined
interpretation, where we, by means of a deterministic algorithm, will select an arbitrary

result (from the set of deterministic implementations) satisfying the specification. We
have chosen the underdetermined interpretation in order to achieve the property of refe-
rential transparency. If the execution of a specification written in our executable subset
of BSI/VDM-SL complies with the user’s expectation, it means that there exists at least
one model which is satisfactory. However, this is no guarantee that all the other models
satisfy his requirements to the functionality. Thus, in general, it is not sufficient simply
to give such a loose specification to somebody else for implementation. Some knowledge
about which of the models that has been selected by means of the deterministic algorithm
must also be taken into account.

3 Constructs in the Executable Subset

Not all BSI/VDM-SL constructs are executable. This applies to implicit function and
operation definitions and all computations over infinite sets (types with infinitely many
values). In addition to these constructs, a number of executable constructs have been
excluded from our subset. An SA/RT specification gives a hierarchical and a graphical
overview of the structure of a system. At the bottom level of such a specification, mini-
specifications are used to specify how the input values are transformed to output values in
a sequential way. In IPTES such algorithms will be described by means of an executable
subset of BSI/VDM-SL which is presented in this article.

We have therefore analysed the expressive power that is necessary to describe the
algorithms in the mini-specifications. The result of this analysis was that the individual
mini-specifications are relatively small and have a simple structure. As a result of this,
and the fact that we cannot expect industrial users of the IPTES tools to be familiar with
functional programming, we have excluded advanced features like lambda expressions,
polymorphism, locally defined functions, and recursive let expressions.

Included in the subset are state definitions, constant (value) definitions, type defini-
tions, explicitly defined functions and operations. The full generality of patterns from
BSI/VDM-SL and most of the expression and statement constructs are also included. In
order to support a simple library facility including auxiliary functions, a subset of the
module concept from BSI/VDM-SL is also adopted in the language.

3.1 Abstract Syntax

We will informally explain what is included, and use BSI/VDM-SL to describe selected
parts of the abstract syntax for our subset. Most of these parts will be used in the semantic
description in the following section.

Modules

A simple library facility is included in the subset by allowing modules with simple imports
and exports. This has been restricted compared with the modules from BSI/VDM-SL so
that state changing operations cannot be exported or imported. In the same way it is
not allowed to have cyclic imports. Type information about the imported and exported
entities enables type checking of a module without analyzing the imported modules.

Type Definitions

The type definitions contain a number of basic types and a number of type construc-
tors. The basic types include Boolean, numeric types (natural numbers, integers, and
reals), characters, and enumeration types (quote literals). The type constructors include
a composite type constructor (producing records), a union type constructor, a product
type constructor, an optional type constructor, a set type constructor, a sequence type
constructor and a map type constructor. Thus all type constructors from BSI/VDM-SL
are included except a few numeric types, the token type, the non-empty sequence type,
the function type, and the injective map type. Invariants on the type definitions can also
be used in the same way as in BSI/VDM-SL.

State Definitions

The state definition consists of a composite type (the components of the composite type
can be considered as the global variables), possibly an invariant on the state type, and
possibly an initialization function. This is equivalent to BSI/VDM-SL, except that the ini-
tialization function is not formulated as a truth-valued predicate like in BSI/VDM-SL but
as an expression returning the initial value. This change is made to ensure executability
in the general case.

Value Definitions

Constant (value) definitions are also included in the same way as in BSI/VDM-SL. Thus,
the left-hand sides of the definitions can be general patterns.

Function Definitions

The function definitions are similar to a combination of explicit and implicit function
definitions from BSI/VDM-SL. However, our abstract syntax differs from the explicit
function definition part of BSI/VDM-SL by disallowing polymorphic functions and Cur-
ried functions, and by supporting a post-condition. The interpreter will then be able to
check whether the arguments used in a function call satisfy the pre-condition and whether
the result of the function also satisfies the post-condition.

Operation Definitions

The abstract syntax for operation definitions is similar to the abstract syntax for function
definitions. The main difference is that the body is a statement instead of an expres-
sion. In addition, there is some information about which parts of the state are used by
the operation. Finally it is possible to declare a number of local variables used in the
operation.

Our abstract syntax differs from the explicit part of BSI/VDM-SL by allowing a post-
condition to be connected to an explicitly defined operation. The locally defined variables
are also dealt with differently in BSI/VDM-SL, where they can be defined inside any block
statement. However, we have decided that we will permit only locally defined variables
at the outermost level in operations. Thus, we have not included block statements.

4

Expressions

The expressions in our subset include all the expression constructs from BSI/VDM-SL
except for the iota expression, the lambda expression and instantiation of polymorphic
functions.

The major differences between the expressions in our subset and those in BSI/VDM-SL
are:

e general bindings from BSI/VDM-SL (type bind and set bind) have been restricted
to set bindings. This restriction is made in order to ensure executability.

e pattern matching cannot be constrained with additional type information.

In the following we will present the abstract syntax for those kinds of expressions we
will use to illustrate the semantics with.
The abstract syntax for a let expression is:

LetExpr :: loc : Pattern — Expr
m : Bxpr

where the loc field contains a collection of patterns to be matched against the correspond-
ing expressions. The let expression denotes the value of the in expression evaluated in an
environment where the pattern matchings have been performed. However, it should be
noted that we have restricted the collection of definitions to non-recursive ones because
the mutually recursive definitions used in BSI/VDM-SL are not needed for the IPTES
mini-specifications. Another difference from the standard is that we (for the same reason)
have removed the possibility of defining local functions.
The abstract syntax for a let-be-such-that expression is:

LetBeSTEzpr :: bind : SetBind
st Expr
m : Frpr

where the bind is a binding of a pattern to a finite set, st, is a predicate using the pattern
identifiers from the bind. The expression denotes the value of the in expression in an
environment where a successful pattern matching has been performed and the st predicate
is satisfied. This abstract syntax is equivalent to the one used in BSI/VDM-SL except
that the general binding has been restricted to a set binding for the reason explained in
the beginning of this section. This expression may contain looseness and the next section
illustrates how this looseness is dealt with.
The abstract syntax for quantified expressions (V and 3) is:

AllOrExistsExpr :: quant : AllOrExistsQuantifier
bind : SetBind-set
pred : Ezpr

AllOrEzistsQuantifier = ALL | EXISTS

This is equivalent to BSI/VDM-SL except that the general binding has been restricted
to a set binding as explained above. However, the operational semantics differs from the
BSI/VDM-SL semantics which will be discussed in the next section.

Patterns

All pattern constructs from BSI/VDM-SL have been included in our subset. Here we will
only present the abstract syntax for a set union pattern because is the only pattern this
construct which will be given semantics in the next section.

The abstract syntax for set union patterns is:

SetUnionPattern :: Ip : Pattern
rp : Pattern

where [p union rp are matched against a set value. The two patterns must be matched
to two disjoint subsets of the set value. This construct is used when one wants to split a
set into two disjoint sets and the resulting binding is therefore loosely specified.

Bindings

As explained above we have included only the set binding in order to make bindings
executable.

Statements

We have included all the statements from BSI/VDM-SL except for the block statement,
the non-deterministic statement, the identity statement, and the exit mechanism.

4 The Semantics of the Executable Subset

The semantics presented here is operational, and it is inspired by [Bjgrner91] where a
stack semantics of a Simple Applicative Language (SAL) is presented. However, we are
only using a stack of environments, and not a stack of values. This difference is caused by
the fact that the target for the development of the interpreter in [Bjgrner91] was a stack
machine, while our target is a high level programming language (C++).

The semantics of the executable subset of BSI/VDM-SL is itself described using the
complete version of BSI/VDM-SL*. However, expressions in BSI/VDM-SL cannot have
side-effects and therefore, operations cannot be called inside expressions. We have for
notational convenience chosen to allow calls of operations, which do not change the state,
inside expressions because these operations do not cause side-effects anyway.

4In order to increase the readability of the operational semantics we have chosen to indicate the block
structure by means of indentation instead of grouping statements together in blocks by means of brackets.
We have been able to do this because we have used the IXTEX macros produced by Jan-Bert Oostenenk
(see [Oostenenk90]).

In this section we first present the semantic domains, and then we explain the principles
of the evaluation functions illustrated by means of a few examples taken from the full
definition of the operational semantics for our executable subset.

4.1 Semantic Domains

The semantic domains describe the type of the structures which will be used for specifying
the operational semantics for the abstract syntax.

ENV, = ENV*

The main structure in the semantic domains is the environment. The environment
ENYV}, is organized as a stack of function application environments ENV. When a function
is called, it must establish a local environment containing its own definitions such as the
formal parameters.

ENV = BlkEnv*

Expressions can define a local environment called a block environment (BlkEnv). For
example a let expression will produce a local environment for which the scope is the
body of the let-expression. The function application environment is therefore organized
as a stack of block environments where the first block environment pushed on the stack
contains the instantiation of the formal parameters. When the value of an identifier is
looked up this will happen in a top down manner down through the block environments.

BlkEnv = IdVal”

A block environment is a sequence of IdVal’s, each containing an identifier and its
associated value. A BlkEnv could alternatively have been modeled as a map. Modeling
it as a sequence allows a more controlled error recovery as illustrated by the function
UnionMatch which is presented in section 4.2.2. Naturally, some auxiliary functions have
been defined to manipulate the environment (e.g. PushBlkEnv and PopBlkEnv). They
are called by the evaluation functions.

When possible, the values in the semantic domain are specified in terms of the corre-
sponding BSI/VDM-SL constructs, except that they are all tagged.

VAL = BasicType | SET | ...

SET ::bd : VAL-set

These tags are used by the interpreter for dynamic type checking.

4.2 Evaluation Functions

The evaluation functions in this operational semantics of our executable subset differ
from the evaluation functions for the dynamic semantics of the BSI/VDM-SL. In order
to take looseness into account, the evaluation functions from the dynamic semantics of
the BSI/VDM-SL return all possible results of evaluating a syntactic construct in a given

7

environment. In this work, an arbitrary one of the possible results will be returned when
we deal with values. However, when we deal with pattern matching, all possible resulting
binding environments are returned, and taken into account. This is necessary because
there are situations (e.g. the let-be-such-that construct) where additional constraints are
put on the matching afterwards. It is also important for quantified expressions where
looseness in the pattern gives different binding environments which must all satisfy the
predicate. Since the algorithm selecting an arbitrary value is deterministic, looseness of
both functions and operations will be interpreted as underdeterminedness (i.e. if a func-
tion is loosely specified it will always return the same result given the same arguments).
This will of course mean that two abstractly equal values (e.g. {1,2,3} and {2, 1,3}) are
implemented so that they have the same concrete representation in the implementation.

All the evaluation functions use the state (and they ought therefore to be called op-
erations in the BSI/VDM terminology). The state type in our operational semantics has
as one of its components the stack of environments presented in the previous section:

PRSI
env, . ENVp,

4.2.1 Expressions

The evaluation function for expressions uses the state, it takes a syntactic expression as
argument and returns a semantic value. Thus, the signature of FvalFxpr is:

EvalEzpr : Expr % VAL

where VAL is the type of an arbitrary value which the syntactic expression can evaluate to.

The expressions contain patterns, and the patterns can be loosely specified. We will now

describe the evaluation functions of a few expressions, starting with the let expression.
The semantics of the let expression is defined as:

EvalLetExpr : LetExpr = VAL

EvalLetExpr (mk-LetEzpr(loc,y,, in.)) &
dcl paty, : Pattern™ :=[],
valy, : VAL* :=];
for all pat, € dom loc,,
do valy, := valy, ~ [EvalExpr(loc, (pat,))];

)

paty, 1= paty, ~ [paty);
let envs = PatternListMatch(paty,, valy,) in
if envs # { }
then let env € env, in
PushBlkEnv(env) ;
let in, = EvalEzpr(in.) in
PopBlkEnv() ;

return in,
else error

The local definitions from loc,, are collected in two sequences; wval, contains a sequence
of semantic values and pat;, contains a sequence of syntactic patterns. All possible ways
of matching the patterns against the values are collected in enwv, which is a set of binding
environments where every binding environment contains the environment for one possible
matching. If the matching fails an empty set is returned and the evaluation of the whole
let expression fails. Otherwise, an arbitrary one of these resulting binding environments is
chosen, and pushed on top of the environment stack. Even though this description states
that any binding environment can be chosen, the implementation will ensure underdeter-
minism by returning the same binding environment given the same set env,. Then the
body expression is evaluated in the new context and the environment is popped off the
stack again, before the resulting value is returned.

The operational semantics presented here corresponds (functionally) to the dynamic
semantics of BSI/VDM-SL except that only one value is returned instead of the set of all
possible values. Furthermore, as mentioned in the section about the abstract syntax we
have chosen not to include mutually recursive definitions.

The semantics of the let-be-such-that expression is defined as:

EvalLetBeSTExpr : LetBeSTExpr % VAL

EvalLetBeSTExpr (mk-LetBeSTEzpr(bindy, st., in.)) &
dcl env, : BlkEnv-set : = { };
for all env € EwvalSetBind(bind,)
do PushBlkEnv(env) ;
let st, = EvalEzpr(st.) in
if is-BOOL(st,)
then let mk-BOOL(b) = st, in
if b
then env; := envs U {env}
else error;
PopBlkEnv() ;
if env, # { }
then let env € env, in
PushBlkEnv(env) ;
let in, = FvalExpr(in,) in
PopBlkEnv() ;
return in,
else error

For all possible binding environments which can be constructed from the set bind (bindy)
the “such that” expression (st.) is evaluated. The binding environments in which the st,
evaluates to true are collected, and an arbitrary one is selected and pushed on top of
the stack. The body expression is then evaluated in this context and the environment is
popped off the stack again before the resulting value is returned.

The definition above corresponds closely to the dynamic semantics of the complete ver-
sion of BST/VDM-SL. The only difference is that here only an arbitrary one of the possible
values are returned, while all possible values are collected and returned in [Larsen90].

The semantics of the quantified expressions (V and 3) is defined as:

EvalAllOrEzistsExpr : AllOrExistsExpr = VAL

EvalAllOrExistsExpr (mk- AllOrEzistsExpr (quant, bindg, pred,)) 2
dcl env, : BlkEnv-set,
cont : B := true;
envs : = EvalSetBindSet(bindgy,) ;
while envs # { } A cont
do let env € env, in
PushBlkEnv(env) ;
let pred, = EvalEzpr(pred,) in
if 1s-BOOL(pred,)
then let mk-BOOL(b) = pred, in
cases quant:
ALL — cont := b,
EXISTS — cont := — b
end
else error;
envg 1= envs — {env};
PopBlkEnv() ;
cases quant:
ALL — return mk-BOOL(cont),
EXISTS — return mk-BOOL(— cont)
end

For all possible binding environments which can be constructed from the set of bindings
(bindg,) the predicate expression (pred,) is evaluated. It is then tested whether it is worth
continuing (e.g. if it is a universal quantification we can leave the loop when we have
found the first binding for which the predicate evaluates to false).

The dynamic semantics for BSI/VDM-SL is based on the three valued logic called
LPF (Logic for Partial Functions) used in [Jones90]. This logic requires unbounded par-
allelism which naturally we cannot deal with when we are executing the specification.
Thus, this operational semantics of the quantified expressions differs from the semantics
of BSI/VDM-SL. The logic of the operational semantics can be considered as a conditional
and/or between all the possible bindings. Thus, the two generalized forms of de Morgan’s
rule® still hold with our semantics, which we consider quite important.

4.2.2 Patterns

The general pattern matching operation PatternMatch uses the state and takes a syntactic
pattern and a semantic value to match against the pattern as arguments, and returns the
set of possible binding environments.

®The generalized forms of de Morgan’s rule state that one of the quantifiers (universal or existential)
over a predicate can be represented by negating the other quantifier with the negated predicate.

10

PatternMatch : Pattern x VAL - BlkEnv-set

A binding environment is a block environment which instantiate the unbound variables
(pattern identifiers) introduced in the pattern. If a pattern matching fails an empty set will
be returned. PatternMatch examines the syntactic pattern and calls the corresponding
matching operation.

As an example we present MatchSetUnionPattern which matches a set union pattern
to a set value.

MatchSetUnionPattern : SetUnionPattern x VAL > BklEnv-set

MatchSetUnionPattern (mk-SetUnionPattern(lp,, rp,), val,) £
dcl envresy : BlkEnv-set := { };
if is-SET (val,)
then let mk-SET (vals,) = val, in
for all (setly,, setry,) € SetChop(valg,)
do let envl; = PatternMatch(lp,, mk-SET (setls,)),
envrs = PatternMatch(rp,, mk-SET (setry,)) in
if envly # { } A envry # { }
then envres, : = envresg U
UnionMatch ({ EnvMerge(tmp, tmps) |
tmpy € envly, tmpy € envrg}) ;
return envresy;
else error

SetChop : VAL-set — (VAL-set x VAL-set)-set

SetChop (valy,) 2
{(setlyy, setry,) | setly,, setry, € F valg, -
(setly, U setry, = valg,) A (setly, N setry, = { })}

All possible disjoint pair of sets are chopped from the set value valg, by SetChop. For all
possible set-pairs, the sets are matched against two patterns lp, and rp,. This generates
two sets of binding environments which, if both matchings succeed, are combined to obtain
the joint set of possible binding environments. Before adding this set to the result it is
filtered by UnionMatch which is defined as follows:

UnionMatch : BlkEnv-set = BlkEnv-set

UnionMatch (blky) 2
return {StripDoubles (blk;) | blk, € blkg; -
V (id, v1,) € elems blk;, (id, v,) € elems blk; - vy, =

UQU}

UnionMatch filters a set of binding environments for inconsistency and redundancy. A
binding environment is considered inconsistent if an identifier is associated with two dif-
ferent values. This situation can occur if repeated pattern identifiers have been used but

11

are matched to different values. This is not a valid binding environment and is there-
fore removed. In UnionMatch this is done by returning only binding environments where
possible identical pattern identifiers are associated to identical values.

If a pattern matching using repeated pattern identifiers succeeds (is consistent) it will
result in duplicate entries in the binding environment which is redundant information.
StripDoubles therefore removes all duplicate entries.

5 Examples

In this section we will present a few examples of patterns using loose specification and
repeated pattern identifiers illustrating the expressiveness provided by the generality of
the patterns in our subset.

To illustrate the use of loose specification we present a version of the MergeSort
algorithm.

MergeSort : N-set — N*

MergeSort (set) &
cases set :

{} — 1,

{e} — le],

sety U sety — Merge(MergeSort(sety), MergeSort(sety))
end

Merge : N* x N* — N*

Merge (seqy, seq,) 2
cases (seq, seq,)
(1. seq) =
(seq, []) — seq,
([e] 7~ seq), [er] 7 seq.) — if e, < e,
then [e;] 7 Merge(seq], seq,)
else [e,] — Merge(seq, seq..)
end

MergeSort takes a set of natural numbers and returns a sorted list of the elements in
the set. If set contains more than one element it is split up, using the loosely specified
union match, into two disjoint sets set; and set;. These sets are sorted recursively and
the results are merged by Merge.

If we wanted to ensure that set; and sety are of approximately the same cardinality,
this could be done by the let-be-such-that expression which is also included in our subset.
The last entry in the case expression in MergeSort should then be replaced with:

s — let set; U sety € {s} be st abs (card set; — card sefy) < 1 in
Merge(MergeSort(set,), MergeSort(sets))

12

The let-be-such-that expression is still loosely specified as the pattern matching of the
set union against set (the only element in the bind set {set}) can result in a number of
possible binding environments. The difference from the original solution is the additional
constraint (the such-that predicate) which is placed on the possible binding environments.

To illustrate the use of repeated pattern identifiers, we have specified an invariant for
the type PointSet.

PointSet = (X x Y)-set
inv ps &V (z,41) € ps, (,42) € ps - y1 =1

This shows how the use of repeated pattern identifiers can describe, in a compact form, the
condition on a set of type PointSet, that points which have the same the first coordinate
must also have the same second coordinate.

6 Related Work

There exist a number of other executable languages which have been more or less inspired
by VDM. In [Plat&89] an overview of existing tool support for VDM is presented. How-
ever, only two projects dealing with an executable subset of VDM-SL are given in that
overview. These are the Meta-IV compiler project from Kiel University (see [Hafi87]),
and the EPROS project where both an interpreter and a compiler for a language called
EPROL (strongly inspired by VDM) have been developed (see [Hekmatpour&88]). In ad-
dition to these two we have looked at ‘me too’ (see [Alexander&90]). The main difference
between our executable language and the existing ones is the generality of the pattern
matching.

None of the existing executable languages inspired by VDM which have been men-
tioned above contains more than pattern identifiers, tuple patterns, and record patterns.
However, a number of languages for functional programming exist which also support
sequence patterns. In addition, the pattern matching in all the existing languages is de-
terministic. However, it is clear that by taking an approach where we deal with loosely
specified patterns we will lose some efficiency. On the other hand, the generality of the
patterns we are using provides the user with much more flexibility in writing the (exe-
cutable) specifications. For instance it would not be possible to write any of the examples
from the previous section in any of the other executable languages inspired by VDM.

7 Concluding Remarks

We have defined an executable subset of a VDM dialect which is more powerful than any
of the existing ones we are aware of. Even though the syntax has been selected specially
to provide the necessary expressive power for the mini-specifications in IPTES, we hope
to be able to implement it so that it can be used outside the IPTES environment as well.
We hope to be able to do this because we feel that such an interpreter will be useful for
other applications as well.

13

We also consider it a strength of the subset that it is as closely related to the forth-
coming standard language (both BSI and ISO VDM-SL) as it is. Thus, the users of
this interpreter will have plenty of existing literature at their disposal, because a lot of
publications are expected to be using the standard notation.

We still have to finish the actual implementation of the interpreter according to the
operational semantics presented here. The current state of the project (primo August
1991) is that we have finished the specification of the syntax and semantics. A parser
which constructs abstract syntax trees have also been implemented and we are in the
process of implementing C++ classes for the most common VDM-SL types. We hope
that these classes and the operational nature of the semantics will allow us to design an
interpreter which structure is closely related to the definition of the semantics, thereby
achieving a short and reliable design in implementation phase. It is an open question
how efficient our interpreter will be, due to the generality we have included. However, we
expect to know much more about the efficiency at the time of the VDM symposium as
the first version of the interpreter is planned to be completed in December 1991.

Acknowledgments

We would like to thank John Dawes, Stephen Bear, Hans Toetenel and especially Nico
Plat and Jan Storbank Pedersen for valuable remarks on an earlier version of this article.
In addition we have had constructive remarks from our colleagues at IFAD.

The IPTES consortium is formed by IFAD (Denmark), VI'T (Finland), MARI (United
Kingdom), CEA/LETI (France), ENEA (Italy), Synergie (France), DIT/UPM (Spain),
Telefénica I+D (Spain), and Politecnico di Milano (Italy).

References

[Alexander&90] Heather Alexander and Val Jones. Software Design and Prototyping
using Me Too. Prentice Hall, 1990.

[Bjorner91] Dines Bjgrner. Software Architectures and Programming Systems Design.
Submitted to publisher.

[BSIVDMO1] VDM Specification Language — Proto-Standard. Technical Report, British
Standards Institution, 1991. BSI IST/5/50.

[Ghezzi&91] Carlo Ghezzi, Dino Mandrioli, Sandro Morasca and Mauro Pezzé. A Unified
High-Level Petri Net Model For Time-Critical Systems. IEEE Transactions on Software
Engineering, 17(2), 1991.

[HaB87] Manfred Ha8. Development and Application of a Meta IV Compiler. In VDM -
A Formal Method at Work, Springer—Verlag, 1987.

[Hekmatpour&88] Sharam Hekmatpour and Darrel Ince. Software Prototyping, Formal
Methods and VDM. Addison-Wesley, 1988.

14

[Jones90] Cliff B. Jones. Systematic Software Development Using VDM (second edition).
Prentice Hall, 1990.

[Larsen&89] Peter Gorm Larsen, Michael Meincke Arentoft, Brian Monahan and Stephen
Bear. Towards a Formal Semantics of The BSI/VDM Specification Language. In
Information Processing 89, North-Holland, 1989.

[Larsen90] Peter Gorm Larsen. The Dynamic Semantics of the BSI/VDM Specification
Language. Technical Report, August 1990.

[Leon&91] Gonzalo Leén, J.A. de la Puente, M.A. Ruz and E.W. Sink. Definition of the
IPTES Architecture. Technical Report, May 1991.
IPTES Doc.id : IPTES-UPM-1-V2.3.

[Oostenenk90] Jan-Bert Oostenenk. Typesetting VDM with VDMSL macros. Technical
Report, NPL, 1990.

[Plat&89] Nico Plat and Hans Toetenel. Tool support for VDM. Technical Report 89-81,
Delft University of Technology, 1989.

[Ward&85] P.T. Ward and S.J. Mellor. Structured Development for Real-Time Systems.
Yourdon Press, 1985.

[Wieth89] Morten Wieth. Loose Specification and its Semantics. In Information Pro-
cessing 89, North-Holland, 1989.

15

