
Standards for Non�Executable Speci�cation Languages

Peter Gorm Larsen
The Institute of Applied Computer Science �IFAD�
Forskerparken ��� DK����� Odense M� Denmark

Nico Plat
Delft University of Technology

Faculty of Technical Mathematics and Informatics
P	O	Box ��
� NL��
�� AJ Delft� The Netherlands

May ��� ����

Abstract

This paper discusses the impact of the standardization of �non�executable� speci�cation
languages� standardization can increase the interest in� and acceptance of� a speci�cation
language� and it stimulates the development of tool support for such a language� It is
argued why a speci�cation language should preferably be formally de�ned� The ISO�VDM�
SL standard �under construction� is used as an illustration� The fact that many speci�cation
languages are non�executable causes problems in the areas of conformance and compliance�
These problems are touched upon�

� Introduction

The use of formal languages for system speci�cation is increasing and this has led to the devel�
opment of a number of standards for such languages� This raises the question how standards for

speci�cation languages can best be de�ned� In this paper we will discuss the standardization of

�in particular non�executable� speci�cation languages� We will argue in favor of formally de�ning
such standards� and we will illustrate our arguments using the ISO�VDM�SL standard �under

construction�� We will also analyze some problems related to conformance and compliance�

��� Formal versus Informal Speci�cation

Speci�cations are used to express the requirements of a product� When the development of a
product starts it is customary to begin by writing a speci�cation of what the product should do�

Currently� such speci�cations are typically formulated in natural language� The main advantage
of natural language is that it is easy to read and write� the main disadvantage is that ambiguity
by the very richness of natural language� Thus� there is a danger that speci�cations formulated

using natural language may be interpreted in a di�erent way than was intended by the writer
of that speci�cation� An unambiguous notation should be used to avoid this situation�

The best�known examples of unambiguous notations are programming languages� where com�
pilers provide an unambiguous interpretation of the syntax and semantics of the language� How�

ever� when di�erent compilers give di�erent semantics to the same notation� the problem is not
solved� and therefore standards have been de�ned for a large number of programming languages�

	



In this way it is possible for commercial tool builders to develop compilers with a syntax and
semantics corresponding to the users expectations� The main disadvantage is that by expressing

a speci�cation using a �standardized� programming language the level of abstraction often is too

low� too much emphasis is put on algorithmic detail� and this distracts attention from essential
points in the requirements expressed in the speci�cation� Although some modern programming
languages provide limited data abstraction facilities� this kind of abstraction is often sacri�ced
in order to gain e
cient access to the data �e�g� using pointers��

Another kind of unambiguous notation with a high level of abstraction are the speci�cation
languages� These languages are notations dedicated to describing speci�cations� Some speci��
cation languages have a mathematical foundation� and are therefore called formal speci�cation

languages� Algorithm abstraction is obtained in speci�cation languages by means of implicit
de�nitions which are impossible to use in programming languages because �in general� they are
not executable� In this way we can specify what should be done� instead of specifying how to
do it� An important property of such a speci�cation language is the notion of loose speci�ca�

tion� Loose speci�cations denote a choice among a range of legal results� In many cases several
di�erent results can be equally valid�

In general there is a danger in limiting the power of the notation used for speci�cations to the
point where all of their constructs can be executed� and where it is impossible to express looseness

�see �Hayes�
���� Programming languages do not give the proper amount of abstraction� while
speci�cation languages do�

��� Using Speci�cation Languages in Industry

Some of the non�executable speci�cation languages supported by well�known formal methods
�e�g� VDM �Jones���� �Dawes�	�� �Andrews��	�� and Z �Hayes
��� �Spivey���� have been used
as �paper and pencil� tools� The strength of using speci�cation languages in this way is that

it is easy to extend the notation of the speci�cation language to suit a particular paradigm
or application area�� There is a trade�o� here� because computer�based tools supporting such
a speci�cation language require a standard notation� A standard for a speci�cation language
makes the development of mechanized support more attractive for tool vendors� and if such

speci�cation languages are to be used in large scale industrial applications� it is necessary to
have computer�based tools supporting these languages�� Although there are many prototype

tools from research projects� there is still a lack of high�quality commercial tools� Fortunately�
the situation is improving and we will return to this in Section ��

��� Using Speci�cation Languages in Standards

A standard for a product speci�es which requirements the product must satisfy to comply with
the standard� Currently� most standards are de�ned using a natural language� The informal

nature of such descriptions makes misunderstandings possible� and also makes it impossible to
verify compliance with that standard�

In the case of programming languages most standards only formally specify the syntax by

means of BNF�like descriptions� The semantics of the various constructs in the programming

�There exists so many di�erent paradigms and application areas that it is not be possible to make a coherent
speci�cation language which includes them all�

�Clearly tools are not the only necessary requirement for applying formal methods� The users must also be
educated in using the speci�cation language� However� the whole aspect of technology transfer of formal methods
goes beyond the subject of this paper and we will not go further into this subject here�

�



languages is still normally informally explained in a natural language�� In order to check that
a compiler complies with the standard� a test suite is made which the compiler must deal

with appropriately� However� such a test suite cannot prove that a compiler complies with a

standard� it can only make it very plausible� Furthermore� if a compiler does not comply with
user expectations in a speci�c case� an informal speci�cation of the language does not necessarily
clarify the problem� A formal speci�cation however� will always give an unambiguous answer to
the question�

Although usually presented in contrast to each other� these two kind of descriptions � formal
and informal � are best viewed as complementary� either a formal description can be explained
by natural language annotations� or a natural language description can be supplemented by

formal descriptions� If a standard uses a formal description for specifying its contents �simply
accompanying the description with natural language comments� all advantages of the formal
description also hold for the standard as a whole� Alternatively� if a standard speci�es its
contents in a natural language and uses a formal description of some of its parts� it is only for

these parts that properties can be proven� not for the entire standard��
We believe that the introduction of formal descriptions in standards will start with the latter

approach� giving some advantages� However� the major aim for future standards must be the
former approach which enables formal veri�cation of compliance with a standard� This is in line

with the conclusion from a BCS working group on formal methods in standards �Ruggles����
In the telecommunication industry it is nowadays recognized that it is an advantage to

have standards for the speci�cation languages that are used� Within ISO �the International

Standards Organisation� two standards have been developed for such speci�cation languages
�LOTOS �ISO

���� and ESTELLE �ISO������� CCITT �the Comit�e Consultatif International
T�el�ephonique et T�el�egraphique� have also standardized the SDL �SDL� speci�cation language�
which is used to describe distributed systems�

Summarizing� we believe that if �standardized� speci�cation languages are used in standards�
more accurate and useful standards can be achieved� If such formal descriptions are accompanied
by comments in a natural language the standard will also be understood by people who lack
knowledge of the formal speci�cation language that has been used�

� Example� The VDM�SL Standard

As an example of how a standard for a speci�cation language can be de�ned we will present a
short overview of the VDM�SL standard� in this section� Two main VDM books ��Bj�rner��
�
and �Bj�rner�
��� were used as baseline documents for the standard� At the start of the stan�

dardization process it had been decided that the standard itself should as much as possible be
formally de�ned� in order to make it as precise as possible� However� even though the aim
and the basis of the standard were clear� it took a long time to produce the standard� This was
mainly due to the number of di�erent existing VDM dialects� and to the lack of knowledge about

the semantics of the combination of all the di�erent constructs� in this way the standardization
work itself clari�ed many points about the VDM speci�cation language�

A formal language L can be de�ned by a tuple�

�An outstanding exception to this is the Modula�� standard �BSI�Modula�� which currently is de�ning the
semantics formally using VDM�SL�

�An example is the O	ce Document Architecture standard �ISO
��
�� where a formal speci�cation is given as
an addendum to the standard�

�Currently the speci�cation language supporting the Vienna Development Method �VDM� is being standard�
ized under the auspices of both ISO and BSI �see �BSIVDM�����

�



L � �SL�DSL�

where SL denotes the set of all valid sentences s in the language �usually implicitly de�ned by a
combination of a context�free grammar and a function SSL removing those sentences from the
language generated by the grammar which are not well�formed�� and DSL is a function�

DSL � s � M �set

which provides a dynamic semantics �meaning� to a sentence of that language� Because non�
executable speci�cation languages have abstraction features such as looseness� the meaning of a
sentence �speci�cation� can be given as a set of models M �

The standard for VDM�SL follows this scheme� but has some additional components as well�

The complete de�nition of the standard for VDM�SL can be divided into a number of major
components� a syntax �at three levels of abstraction�� symbol representations� a static semantics�
a dynamic semantics� and a syntax mapping� The relation between these components is shown
in Figure 	�

�����
�����
�������
�����
��

�����
�����
�������
�����
��

��
�
��
��
�
��
������
�����
���

���
�����
��

���
�����
��

����
�����
�����
�
��
��
�
��
��

����
������
����
��
��
��
��
������

������
����
��
��
��
��
��

���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���
�����
��

���
�����
��

���
�����
��

���
�����
��

���
�����
��

���
�����
��

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
��
��
�
��
��

�
��
��
�
��
��

�
��
��
�
��
��

�
��
��
�
��
��

�
��
��
�
��
��

�
��
��
�
��
��

���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���
�����
��

���
�����
��

���
�����
��

���
�����
��

���
�����
��

���
�����
��

��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
�
��
��
��
�

��
�
��
��
��
�

��
�
��
��
��
�

��
�
��
��
��
�

��
�
��
��
��
�

��
�
��
��
��
�

M �set

syntax

concrete syntax

outer abstract syntax �OAS� SM

symbol representations

L

DS
SS

well�formedness grade

core abstract syntax �CAS�

Figure 	� Structure of the VDM�SL standard

The latest version of the standard can be found in �BSIVDM�	�� Below we will present a
short overview of the standard and the connections included in the �gure above �for a more
thorough overview see �Plat���a���

��� The syntax

The main component of the �user interface� of VDM�SL is formed by its syntax� which exists in

two forms�

	� EBNF rewriting rules� The EBNF formalism is nowadays the most accepted form for
de�ning the concrete syntax of a formal language� in particular because of the possibilities

for automatically generating parsers from such a de�nition�

�� VDM�SL type de�nitions� This form is called the Outer Abstract Syntax �OAS�� The
OAS was introduced because it can be used by parts of the standard which are de�ned

�



in terms of VDM�SL functions� This is clearly not possible for the EBNF form� because
EBNF is an entirely di�erent formalism� The OAS is used both by the static semantics

SS �subsection ���� and by the syntax mapping functions SM �subsection �����

The syntax is the starting point which is used for the de�nition of all other relevant aspects

of VDM�SL in the standard�

��� Symbol representations

A VDM�SL speci�cation has a de�ned representation on paper� computer screens� etc� The re�

quired representation of the symbols used in a speci�cation is de�ned in the standard� Currently�
two di�erent representations exist�

	� A mathematical representation� The mathematical representation provides elegant sym�
bols� clearly distinguishing between keywords� reserved words� and resembling generally

accepted mathematical notation as much as possible�

�� An ASCII representation� An ASCII representation has been de�ned to make automatic
processing of VDM�SL speci�cations possible�

The relation between the syntax and the symbol representations is de�ned by a lexis L�

��� The core abstract syntax

In addition to the outer abstract syntax� the standard also contains another abstract syntax
representation for VDM speci�cations which is less complicated than the OAS� the Core Abstract
Syntax �CAS�� The CAS is used for the de�nition of the formal semantics of the language �the

dynamic semantics DS� subsection ����� and it was introduced because the formulae for the
formal semantics are less complicated and thus easier to understand when de�ned over the CAS
than when de�ned over the OAS�

��� The syntax mapping

There is a large gap between the concrete representation of a VDM�SL speci�cation �OAS� and

the representation over which the meaning of a speci�cation has been de�ned �CAS�� Therefore�
the standard contains a formal de�nition of a syntax mapping SM from a speci�cation in terms

of the OAS to a speci�cation in terms of the CAS� A preliminary de�nition of SM can be found
in �Plat���b��

��� The dynamic semantics

All VDM speci�cations that can be represented in the core abstract syntax are given a formal
meaning by the dynamic semantics DS� The de�nition of DS is based on set theory and the
mathematical notation which is used has been �xed� A number of operators are used to build

a domain universe containing all valid �values� which can be expressed in VDM�SL� On top of

this domain universe a collection of semantic domains is de�ned� These semantic domains are
used in the actual de�nition of DS��

The meaning of a VDM speci�cation can be regarded as a set of models� because speci��

cations can be loose� Loose speci�cation is a technique o�ered by VDM�SL allowing the user

�Notice that DS is a total function over all speci�cations which can be represented in the CAS�

�



to specify highly abstract components which can be implemented with di�erent functionality�
The implementation must simply have a functionality that can be said to implement the loosely

speci�ed construct according to certain implementation relations for VDM�SL�

The actual de�nition of DS �Larsen��� is given in a denotational way� without using the
traditional style of explicitly constructing the denotation� Instead� �rst the set of all possible
models is created� and then� by examining the syntactic speci�cation� this set is restricted to
those models that can be considered the denotation of the speci�cation� This technique o�ers a

relational style of denotational semantics�

��� The static semantics

VDM speci�cations that are syntactically correct according to the EBNF rules do not necessarily

obey the typing and scoping rules of the language� The standard� therefore� provides a formal
de�nition of the well�formedness of a VDM speci�cation� the static semantics SS �Bruun����
of the language� The static semantics has itself been formulated in VDM�SL�

The VDM speci�cations having at least one model in the dynamic semantics� can be con�
sidered as those which are well�formed� In general� it is not statically decidable whether a
given VDM speci�cation is well�formed or not� The static semantics for VDM�SL di�ers from
the static semantics of other languages in the sense that it only rejects speci�cations which

are de�nitely not well�formed� and only accepts speci�cations which are de�nitely well�formed�
Thus� the static semantics for VDM�SL attaches a well�formedness grade to a VDM speci�ca�
tion� Such a well�formedness grade indicates whether a speci�cation is de�nitely well�formed�
de�nitely not�well�formed� or maybe well�formed�

� Tool Support for Speci�cation Languages

The development of tool support for formal languages has evolved to a large extent in parallel
to the development of those languages� and tools have become increasingly more important�
Compilers� for example� remove the tedious and error�prone task of transforming a program

expressed in a programming language into a program expressed in machine code� In fact� it
is inconceivable that the current production of software could be achieved without such tools�

For formal speci�cation languages a wide range of tools can be envisaged� These tools can be

divided into three categories�

� Syntactic support� Syntactic tools are tools that can be used for the manipulation of formal

speci�cation�s� �fragments�� Examples of such tools are� structure editors for speci�cations
or proofs� type checkers� cross�reference generators� and pretty�printers�

� Semantic support� Semantic tools are tools that can either be used to manipulate the se�
mantics of speci�cations or to validate the correctness of the speci�cations� Such tools can

e�g� be used to develop new speci�cations from existing ones� or to �execute� speci�cations�
Semantic tools typically serve as active vehicles during development� or for veri�cation of a
development step� Examples of semantic tools are theorem provers� compilers� prototyping
tools� semantic analysis tools and transformational tools�

� Pragmatic support� Pragmatic tools are used to support the management of the devel�
opment of a speci�cation� Typical examples of such tools are tools for version control�
con�guration control� journaling� status reporting� etc�

�



Having a standard for a speci�cation language has a large impact on the availability of tools�
Again� looking at VDM�SL� quite soon after the standardization had started� tools became

available that supported the draft standard �Plat�
��� At the VDM��	 conference �VDM�	� a

wide range of tools were demonstrated supporting the standard� Apparently� the introduction
of a standard stimulates the development of tools to a large extent� A number of reasons can
be given�

� A formally de�ned standard leaves no space as to the interpretation of the language� It is

therefore relatively straightforward to e
ciently implement tools supporting the language�

� The availability of a standard can be seen as a recognition by a wide community that
the language in question is �mature� and accepted� This is an indication of the market
potential of the language and tools supporting the manipulation of that language�

� The standard de�nes the requirements that speci�cations expressed in that language must

meet� which makes them interchangeable between di�erent tools�

The claim that a tool �supports� a standard� however� raises another question� What does
it mean for a tool to comply with a standard� The simple answer is� a tool complies with the
standard if the syntax and the semantics manipulated by that tool comply with that standard�
Unfortunately� some tools which intuitively would be included following this de�nition do not

comply� Consider e�g� a prototyping tool for VDM�SL� Since VDM�SL in general is a non�
executable language� such a tool can only support a subset of the language� i�e� an executable

subset� Furthermore� the logic employed by standard VDM�SL is a three�valued logic which

cannot be executed using a sequential programming language� Thus a conditional and�or logic

must be employed which satis�es the standard semantics in all cases where the de�nedness
of a logical expression can be found by evaluating the subcomponents from left to right	� A
prototyping tool for VDM�SL necessarily accepts a language which semantically di�ers slightly

from the standard semantics� What is needed is a mechanism for relating these language and
tool variations to the standard they claim to support�

� Conformance and Compliance

Tools for the manipulation of a speci�cation language can di�er in the type of support they
provide� and in the exact de�nition of the language that they claim to support� As such�

both the type of support provided by a tool� and the language supported by the tool� can be
individually related to the standard� For example� a type checker need only be related to the
syntax and static semantics described in the standard� whereas for the language supported by

the tool it can be claimed that it is the same language as described in the standard� and thus
also has the same dynamic semantics� It is therefore meaningful to make a distinction between
language conformance to � and tool compliance with � a standardized speci�cation language SL
�Figure ���

In the following subsections we will discuss these individually�

�As an example of a case where the conditional and�or logic does not satisfy the standard semantics we can
mention a disjunction between something unde�ned and true� According to the standard semantics� an expression
like � � true denotes true whereas an interpreter using the conditional and�or logic will enter an in�nite recursion
and thus yield ��

�



��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
���
���
���
���
���
���
���
���
����
���
����
����
����
�����
�����
������
������
��������

���������
���������������

�������������������������������������������������������������������������������������������������������������������������������������������������������
��������
�����
�������
���������������������������������������������������������������������������������������������������������������������������������������������������������������

������������
���������
�������
������
�����
�����
�����
����
����
���
����
���
���
���
���
��
���
��
���
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
���
���
��
���
���
���
���
���
����
����
����
����
�����
�����
������
�������

��������
����������

������������������
�����������������������������������������������������������������������������������������������������������������������������������������������������

�����
�����
����������������������������������������������������������������������������������������������������������������������������������������������������������������������

������������
��������
������
������
������
�����
����
�����
����
���
����
���
���
���
���
���
��
���
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��

�����
������
������
������
�

��
��
��
��
�
��
����
�����
���� ��

��
��
��
�
��
����
�����
����

�����
�����
�������
�����
��

Standard S

Language L

conforms tocomplies with

Tool T

SL
Language
Standard

supports

de�nes

Figure �� Conformance and compliance

��� Language conformance

Language conformance is especially important when the speci�cation language is merely used as
a paper�and�pencil tool� A language L is said to �conform� to a standard if it has the same syntax

and semantics as the language de�ned in the standard �SL�� in other words� that language is the
language de�ned in the standard� As we saw in the previous section� sometimes it can be useful
to consider a language that is to a large degree similar to the one de�ned in the standard� but
has some �syntactic or semantic� deviations or extensions to the standard language
� Although

such a language does not conform in the strict sense to the standard language� it is possible to
classify deviations and extensions�

We consider language conformance at three levels�

� Full conformance� A language L with the same syntax� static semantics and dynamic

semantics as de�ned by the standard� fully conforms to the standard language SL� More
formally�

SL � SSL � � s � SL � DSL�s� � DSSL�s�

� Extended full conformance� A languages L� of which a subset can be de�ned having the
same syntax� static semantics and dynamic semantics as de�ned by the standard� can be
regarded as an extension of the standard language SL� In order to claim extended full
conformance to the standard language� the extensions must be formally related to the

standard language� More formally�

� s � SSL �RetrieveL�SL�DSL�s�� � DSSL�s�

where the function RetrieveL�SL�

RetrieveL�SL �ML�set � MSL�set

is a function de�ning the relationship between models from the domain universe of L and

models from the domain universe of SL�

� Partial conformance� A language L that is similar to the language described by the
standard� but in some respect is a �syntactic or semantic� deviation from the standard

�We do not take deviations arising from machine dependencies into account� e�g� limitations on the length of
identi�ers� nesting depth� etc�






language SL� can claim partial conformance to the standard language� provided that the
deviations have been formally de�ned� In the extreme� the consequence of this de�nition

would be that almost any language would �partially conform� to the standard language�

and therefore additional restrictions are required� limiting the kind of deviations that are
allowed� For example� it could be required that deviations are only allowed if the semantics
of the standard language indicates non�termination�

SL � SSL � � s � SSL �RetrieveL�SL�DSL�s�� �� DSSL�s� � DSSL�s� � �

This de�nition ensures that the meaning of a sentence in L di�ers from the meaning of
that same sentence in SL� because SL has no �appropriate� meaning for that sentence�

These three types of conformance make it possible to relate languages in a sensible way to
the language de�ned in the standard�

��� Tool compliance

Tools can provide di�erent kinds of support for a speci�cation language� and therefore tool

compliance can be de�ned with a hierarchy at di�erent levels�

� Syntactic compliance� A tool can be syntactic�compliant to the standard if the type of
support provided by the tool can be formally related to the syntax of the standard language�

More formally� a tool T is said to be syntactic�compliant with a standard language SL if
it can be shown that�

ST � SSL

� Static�semantic compliance� A tool can be static�semantic�compliant to the standard if
the type of support provided by the tool can be formally related to the static semantics
of the standard language� More formally� a tool T is said to be static�semantic�compliant
with a standard language SL if it can be shown that�

SST � SSSL

� Dynamic�semantic compliance �or full compliance�� A tool can be dynamic�semantic�
compliant to the standard if the type of support provided by the tool can be formally

related to the dynamic semantics of the standard language� More formally� a tool T is
said to be dynamic�semantic�compliant with a standard language SL if it can be shown
that�

DST � DSSL

This classi�cation also provides an indication of the usefulness of a tool� For example� a parser
for the language �which provides only a limited form of support� i�e� syntactic support� can only
claim syntactic compliance to the standard� never full compliance�

A prototyping tool for an executable subset of a �generally� non�executable speci�cation
language could for example claim partial conformance to the standard of the language supported
by the tool �because the dynamic semantics of such a language is necessarily di�erent from
the dynamic semantics of the standard non�executable speci�cation language�� whereas the tool

itself could claim both syntactic and static�semantic compliance to the standard� full compliance
cannot be reached�

�



��� Checking compliance

Having de�ned what it actually means for a tool to comply with a standard� the question of how

claimed compliance can be checked becomes important� A number of ways can be envisaged to
check the compliance of a tool with the standard�

� The use of test suites� The use of test suites for checking the compliance of tools �most
notably compilers� for programming languages is well�known� it is the traditional way of
checking compliance� The strategy consists of providing a signi�cant number of tests� which

the tool must process in the way described by the standard� Using the same strategy for
checking the compliance of tools for non�executable speci�cation languages is not without
di
culties� because the expected behaviour of a tool supporting non�executable aspects of

the language cannot be checked in the same way� as illustrated by the earlier mentioned
example of a prototyping tool� The test suite strategy is� therefore� useful for checking the
syntactic and static�semantic compliance� but it can only be used for an executable subset
for dynamic�semantic compliance of tools�

� Proving compliance� Carrying out formal proofs showing that a tool complies with the

standard is possible in theory� provided that the speci�cation language has been formally
de�ned� Unfortunately� since such formal de�nitions can be very complex and large �e�g�
the semantics of VDM�SL comprises roughly ��� pages of formulae alone��� it will in most

cases not be worth the investment� even when proof assistants are available� We do not
foresee that it will be economically feasible to carry out such proofs in the near future�

� Falsi�cation� The basic idea behind falsi�cation is that a tool complies with the standard
unless proven otherwise� Such an approach is not so unreasonable as it may seem at �rst
sight� because tools designed with no serious intend to comply with the standard would

soon be falsi�ed� i�e� speci�cations would be constructed which are not correctly processed
by that tool� The major disadvantage of this method is that the burden of �checking�
compliance does not lie with the tool vendor� but with the standardization body�

� Rigorous arguments� This is perhaps the most pragmatic way of checking compliance� If a

tool vendor can show that there is a systematic translation from the �formal� de�nition of
the standard to the tool� then it is reasonable to assume that such a tool complies with the
standard �the tool may still contain bugs� but that is a di�erent matter�� So� e�g� when
a parser for a speci�cation language is based on a parser generating system� syntactic

compliance can be checked by comparing the underlying grammar to the grammar de�ned
in the standard� Of course� compliance cannot be ensured following this strategy� but it
can be made plausible�

Although as yet there is no easy way to ensure or check compliance� if a speci�cation language

has a formal de�nition then it is potentially easier to check compliance than when no formal
de�nition is given� Clearly it is impossible to prove compliance to a standard without a formal
de�nition�

� Concluding Remarks

The point we have made in this paper is that it is worthwhile to standardize speci�cation lan�

guages which in general are non�executable� We believe that such standards should be formally

	�



de�ned as has been done for the VDM�SL standard� We have also shown that for such non�
executable speci�cation languages it is not obvious how conformance to and compliance with

a standard should be de�ned� This is mainly due to the way such languages are used and the

di�erent kind of tools which can be produced supporting them� Therefore it makes sense to use a
notion of extended and partial conformance for languages which have a large degree of similarity
to the standard speci�cation language� In the same way it makes sense to have di�erent levels
of tool compliance because the nature of the tools are very di�erent�

At the same time we also have to admit that it is our experience that it takes considerable
e�ort to de�ne a standard for a speci�cation language in a fully formal manner� However� we
hope that experience from the VDM�SL standardization can be used for other standards as well�

One of the major achievements of the standardization of VDM�SL is that a number of unclear
points about VDM�SL have been clari�ed� On the tools side we think that it is interesting to see
how a standard for VDM�SL has stimulated the development of new tools using the standard
language� We think that these are important bene�ts resulting from the standardization of

speci�cation languages�

Acknowledgments

We would like to thank Michael Andersen� Ren�e Elmstr�m� Kees Pronk� and Marcel Verhoef
for their valuable suggestions to improve this paper�

References

�Andrews	
�� Derek Andrews and Darrel Ince� Practical Formal Methods with VDM� McGraw Hill�
September �

��

�Bj
rner	��� Dines Bj
rner and Cli� B� Jones� editors� The Vienna Development Method� The
Meta�Language� Volume �� of LNCS� Springer�Verlag� �
���

�Bj
rner	��� Dines Bj
rner and Cli� B� Jones� Formal Speci�cation � Software Development� Series
in Computer Science� Prentice�Hall International� �
���

�Bruun	
�� Hans Bruun� Bo Stig Hansen and Flemming Damm� The Static Semantics of VDM�SL�
Technical Report� ID�DtH� �

��

�BSI�Modula�� JCT��SC���WG�� Draft Proposal DP ��	�
� Third Working Draft Modula�� Stan�
dard�

�BSIVDM
�� VDM Speci�cation Language � Proto�Standard� Technical Report� British Standards
Institution� March �

�� BSI IST������

�Dawes
�� John Dawes� The VDM�SL Reference Guide� Pitman� �

��

�Hayes��� Ian Hayes� editor� Speci�cation Case Studies� Prentice�Hall International� �
���

�Hayes	�
� I�J� Hayes� C�B� Jones� Speci�cations are not �necessarily� executable� Software Engi�
neering Journal� �������� November �
�
�

		



�ISO����� Information Processing � Text and O
ce Systems � O
ce Document Architecture
�ODA� and Interchange Format� Volume parts ���� ISO� �
��� Draft International
Standard ISO�DIS ���������

�ISO����� Information Processing Systems � Open Systems Interconnection � LOTOS � A
Formal Description Technique Based on the Temporal Ordering of Observational Be�
haviour� Technical Report� International Standards Organisation� �
�
� ISO�����

�ISO
���� Information Processing Systems � Open Systems Interconnection � Estelle � A For�
mal Description Technique Based on an Extended State Transition Model� Technical
Report� International Standards Organisation� August �
��� ISO
����

�Jones
�� Cli� B� Jones� Systematic Software Development Using VDM �second edition�� Prentice�
Hall International� �

��

�Larsen
�� Peter Gorm Larsen� The Dynamic Semantics of the BSI�VDM Speci�cation Language�
Technical Report� The Institute of Applied Computer Science� February �

��

�Plat	�
� Nico Plat and Hans Toetenel� Tool support for VDM� Technical Report �
���� Delft
University of Technology� November �
�
�

�Plat	
�a� Nico Plat and Peter Gorm Larsen� An Overview of the ISO�VDM�SL Standard� Sigplan
Notices� ������ August �

��

�Plat	
�b� Nico Plat and Hans Toetenel� A formal transformation from the BSI�VDM�SL concrete
syntax to the core abstract syntax� Technical Report 
����� Delft University� March �

��

�Ruggles
�� C�L�N� Ruggles� editor� Formal Methods in Standards� A Report from the BCS Working
Group� Springer�Verlag� �

��

�SDL� Recommendation Z����� CCITT Speci�cation and Description Language SDL� CCITT�
�
���

�Spivey
�� Mike Spivey� The Z Notation � A Reference Manual �Second Edition�� Prentice�Hall
International� �

��

�VDM
�� S�Prehn and W�J�Toetenel� editors� VDM���� Formal Software Development Methods�
Lecture Notes in Computer Science� Springer Verlag� October �

�� Two volumes�
LNCS ��� �Symposium proceedings� and LNCS ��� �Tutorials��

	�


