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This paper gives a technical/scientific survey of the mathematical semantics of the BSI/VDM Specification
Language, currently being standardised by the British Standards Institution. Following a background intro-
duction, the notion of loose (nondeterministic and underdetermined) specifications and the implications for
the underlying type (domain) universe is discussed. This is followed by technical overviews of expression and

statement semantics.

1 Introduction

The Vienna Development Method (VDM) is a for-
mal method for the description and development of
software systems. The method uses a specification
and design language called Meta-IV. A system de-
sign is generated through a series of specifications
where each specification is more concrete and closer
to the implementation than the previous one. Each
of these steps of development introduces proof obli-
gations which, if they are discharged, ensure the cor-
rectness of the implemented system.

A history of VDM can be found in the fore-
word to [VDMB87] and in [Bjgrner&Jones78]. Other
published books about VDM include: [Jones80],
[Bjorner&Jones82], and [Jones86].

During the last 15 years the language Meta-IV has
been used in many different variants. First of all these
variants reflect two different styles in the use of VDM:
the Danish and the English school. The differences
between these schools are primarily caused by diffe-
rent application areas: systems software respectively
algorithm and data structure refinement. However,
the different variants also reflect that VDM has been
a pragmatic approach where the meta-language has
been extended with properties that were needed for
specific applications. This openness can be seen as a
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strength of VDM from the users point of view. On
the other hand, if everyone is using their own variant
of the method, the development of tools to support
VDM is hindered.

We believe that industrial use of VDM would be
encouraged if there was a standard version of Meta-
IV. A standard would constrain variants and make
it possible to develop support tools for VDM. The
process of defining the standard should also resolve
some of the stylistic differences. The British Stan-
dards Institution (BSI) is currently working on har-
monizing the different variants to produce a standard
for Meta-IV, called the BST/VDM Specification Lan-
guage (BSI/VDM SL). This standardisation effort in-
volves defining a concrete syntax, an abstract syn-
tax, context conditions and a mathematical seman-
tics. This paper deals with the work towards a for-
mal definition of the mathematical semantics of this
standard language.

The first draft of the mathematical semantics con-
sists of approximately 130 pages of mathematical
functions presented in [Arentoft&Larsen88]. One of
the most interesting aspects of this piece of engineer-
ing work is the complexity caused by the size of the
language.

The semantics of BSI/VDM SL is interesting be-
cause a formal semantics has only been given to a
Meta-IV variant once before; STC/VDM RL  aspe-
cification language very close to that used in [Jones80]
and [Jones86]. Unfortunately, due to lack of re-
sources, the STC/VDM RL variant was not circulated
or used sufficiently widely to serve as a standard. We



think that the lack of a standard formal semantics
has been a fundamental problem for the VDM com-
munity. The starting point for our standardisation
work was the STC/VDM RL, so the formal seman-
tics of the BSI/VDM SL represents the culmination of
several years work that is finally nearing completion.

Finally we would like to list what is new in
the current work compared to the semantics of the

STC/VDM RL:

e Explicit operations and statements have been
included in the same way as in the original
Meta-1V.

e Loosely specified expressions and patterns have
been permitted.

e Parameterized modules have been introduced as
a new feature (see [Bear88]).

Structuring by means of modules and polymorphic
functions are new features in the BSI/VDM SL com-
pared to the original Meta-IV.

2 Loose specification

Loose specification arises because a specification gen-
erally needs to be stated at a greater level of abstrac-
tion than that of the final source code of the system.
When loose specification is used, the question of how
to interpret this looseness is often ignored. However,
this interpretation is important, especially if a spe-
cification shall be proven to implement another spe-
cification. The implementation relation relies on the
interpretation of looseness. Thus, this interpretation
is especially interesting in connection with the proof
rules for the specification language.

There are at least two different ways of interpreting
loose specification. We have termed these: ‘underde-
terminedness’ and ‘nondeterminism’.! The difference
between the two lies in the time at which the loose
specification is resolved. If a loosely specified con-
struct is interpreted as underdetermined, it is decided
at implementation time which denotation to choose.
Since this choice is static the final implementation
becomes deterministic. However, if a loosely speci-
fied construct is interpreted as nondeterministic, it
is possible to delay this choice until execution time.
In this way the denotation is chosen dynamically at
run-time. This means that the final implementation
may be nondeterministic. Ideally a specifier would
like to be able to choose freely between these diffe-
rent interpretations for all functions and operations.
However, in this standardisation work, we have cho-
sen not to allow an arbitrary mixture of interpreta-
tion. In BSI/VDM we have chosen to interpret func-
tion definitions as underdetermined while operation
definitions are interpreted as nondeterministic2. The

1In the literature these phenomena are given various other
names.

2There are a lot of interesting considerations behind
this decision. The interested reader is referred to
[Arentoft&Larsen88].

difference between functions and operations in this re-
gard is that operations may operate on a (specified)
state space. Thus, functions are applicative while
operations may be imperative. For a more thorough
investigation of the complexity of the semantics with
an arbitrary combination of loose specification, see

[Wiethss].

3 Foundations

In the following, we use the term ‘model’ for a pos-
sible implementation of a formal specification. When
underdeterminedness is possible, a specification may
have many possible implementations. The denotation
of a specification will therefore be a set of models.
The set of models corresponds to the set of possible
implementations of underdetermined functions.

The formal definition of the mathematical seman-
tics of the BSI/VDM SL is based on the semantics
of the STC/VDM RL (see [Monahan85]). This is
given in the style of denotational semantics inspired
by Tarski’s “truth” definition for first order logic.
This technique is characterized by starting with the
set of all possible models and then, by examining the
syntactic definition, restricting this set to be exactly
those models that can be considered the denotation of
the definition. This technique is a kind of relational
style of denotational semantics. The idea is to de-
fine a relation stating whether a syntactic definition
is logically associated with a given model. In this
way the set of models can be constructed implicitly,
avoiding some propagation of loose specification that
would be necessary if the traditional direct style of
denotational semantics was used.

The type universe provides the basic semantic foun-
dation for types and values in the BSI/VDM SL. The
central principle is that types consist of particular
sets of values belonging to the type universe; an ex-
pression is then said to be well-typed if it denotes a
value belonging to some type.

We are aware of only two published papers in
the area of type universe construction for VDM:
[Blikle&Tarlecki83] and [Monahan87]. As the start-
ing point for our work on the standardisation of
BSI/VDM SL was [Monahan85], the type universe
used was based on the work of Monahan. Alterna-
tively, our type universe work could have been based
upon similar work being developed under the RAISE?
project. However, this work was at a very early stage
and was not sufficiently mature to be incorporated
into the standard.

Our type universe is presently structured into two
levels. The first level consists of sets of finitary val-
ues. It is closed under the finite VDM type operators,
starting from a collection of basic types such as num-
bers, characters and booleans. The type operators
at this level produce types whose elements may be
finite sets, sequences, mappings and so on. Such val-
ues are directly representable as data objects within

3RAISE is an acronym for a Rigorous Approach to Indus-
trial Software Engineering.



computer systems. The second level produces Scott
domains which consist of complete partially ordered
sets of infinitary values such as (Scott continuous)
functions and operations (see [Schmidt86]). These in-
finitary values denote the behaviour of a system exe-
cuting some program code, for example. Another way
to motivate this dichotomy is to see that the equality
predicate is computable (and hence Scott continuous)
only between values from the first level types; it is dis-
continuous (and so not computable) between values
from the second level.

The set of denotable (monomorphic) values, called
VAL, is the set of values belonging to types in the
type universe. Cantor’s paradox is avoided because
the standard VDM type operators are all inclusion-
continuous whereas the full powerset operator is not.
It is certainly true that IP(VAL) ¢ VAL. Furthermore,
no such discontinuous type operators are definable
within VDM, so ensuring that our type universe is
closed.

It should be noted that since Scott domains are
types for us, this implies that L, € VAL. As L uni-
formly stands for the least defined element in every
domain (even functions), we may denote it uniformly
by a single value within models of VDM specifica-
tions.

At the present moment, fully reflexive domains? as
treated by Scott’s theory of domains are not included
within the BSI/VDM SL. This limits the kinds of
programming languages that can be given a natural
denotational semantics within the BSI/VDM SL to
those that do not permit arbitrary procedures to be
assignable, storable objects. Fortunately, the addi-
tional techniques needed to extend the type universe
are very well-known (see [Schmidt86]) and this exten-
sion is under consideration.

The BSI/VDM SL also has a simple concept of
parametric polymorphism. Naively, a polymorphic
function consists of a family of continuous functions
on values, uniformly indexed by types belonging to
the type universe. This indexing by type is described
by the presence of type variables in the type signature
that is associated with the definition of every VDM
function. Instantiation of all the type parameters
then gives an appropriate function on values whose
type is given by instantiating it’s signature. This con-
servative notion of polymorphism is known as shallow
polymorphism. It should be noticed that the semantic
domain for polymorphic values is disjoint from VAL.
Finally, also note that states and operations may not
themselves be polymorphic allowing this seems to
permit unsound development steps.

In BSI/VDM SL a document may be structured as
a number of modules. A module is a high level con-
struct which encapsulates a collection of definitions of
types, functions and operations. A construct ezported
by one module may be imported by another. A mod-
ule may be parameterised by types, functions or ope-

4Domains of the form (D = D) < D, where - means
the continuous function space constructor and < means “is

continuously embedded within.”

rations. A parameterised module may be instantiated
within another module, by providing actual parame-
ters in the place of the formal parameters. Imported
or instantiated constructs may be used as if they were
locally defined.

Consider an isolated module A. The semantics of
the core language (without structuring) defines [ 4],
the set models which constitutes the denotation of A.
If a construct ¢ is acquired — imported or instan-
tiated — by A, then as far as A is concerned, c is
undefined. There are models in [ 4] which provide
any denotation which is consistent with A.

If a module C defines ¢, then the models in [ C]
provide denotations which are consistent with the
definition of ¢. We can use [ C] to identify which
models in [ A] are consistent with the definition of c.
Roughly speaking, we define the semantics of a docu-
ment comprising A and C, to be the set of models in
the intersection [A] N [ C]. (If C'is a parameterised
module, then we can not use [ C'] directly, instead we
must construct a set of models ‘of’ the instantiation,
but the principle is the same.

4 Semantics

We now discuss and illustrate the semantics of ex-
pressions and statements. The semantics of different
kinds of constructs will be illustrated by means of
small examples. These parts of the mathematical se-
mantics have been chosen because they differ substan-
tially from the semantics of the STC/VDM RL.

The semantics of parameterized modules, which
also is a new feature in BSI/VDM SL, has been briefly
touched upon above. A definition has been given in
[Bear88], so it will not be discussed further in this
paper.

In the semantic functions, models are used as en-
vironments, when looking up the denotation of other
constructs. The model will therefore often be seen
as a curried parameter in the function signatures. A
model is represented as a mapping from identifiers of
constructs to their denotations (this semantic domain
is called MODEL).

Before going on to the illustration of the seman-
tics it may be a good idea to clarify that the evalua-
tion of a specification differs from the evaluation of a
program. When evaluating a deterministic program
thereis only one possible evaluation path. When eval-
uating a nondeterministic program it will have sev-
eral possible evaluations, but just one path is used.
In the evaluation of a specification all possible paths
are followed, which means that all possible results are
collected and returned.

4.1 Expressions

Because expressions may be loosely specified, the
signature of the function that evaluates expressions,
‘EvalEzxpr’, is:

Expr - MODEL — IP(VAL),



where IP is the powerset operator with possibly infi-
nite sets.

Notice that, with this signature, the denotation of
an expression is a function from models to sets of
values. This set corresponds to the set of possible
values that the given expression could result in with
the given model as environment.

The interpretation of the set of possible values de-
pends upon the context in which the expression is
used. This means that a loosely specified expression
is interpreted as underdetermined if it is used inside
a function, and as nondeterministic if it is used inside
an operation.

Alternatively the signature could be:

Expr —» IP(MODEL — VAL).

This implies that the denotation of an expression in-
stead would be a set of functions from models to val-

ues. Notice that there is a natural surjection from IP

(A — B) onto (A — IP(B)) given by:

SetPunApply : IP(A — B) - A — IP(B)
SetPunApply(s)(a) 2 {g(a) : B| g€ s}

although the domains, IP(A — B) and (A — IP(B)),
will not be isomorphic, since they generally have dif-
ferent cardinalities.

It has been decided to exclude expressions with side
effects. If side-effects were permitted, the signature
of ‘EvalEzpr’ would have to be changed to:

Expr — MODEL — IP(MODEL x VAL),

where the returned models correspond to the possibly
changed models (remember that a MODEL is used
here as an environment).

We will now try to illustrate how the semantics of
expressions is affected by the presence of loose specifi-
cation by means of some concrete Meta-IV constructs.

The let-be-such-that expression is an example of an
expression that may be loosely specified. We will first
illustrate this with a simple example:

letze {12}inz.

The evaluation of ‘EvalEzpr’ with the given sig-
nature applied to this expression will return the set
{1,2} independently of the model.

Looseness of an expression like this can spread to
any other kind of expression construct. Here, we will
modify the first example to illustrate the principle:

let z€ {1,2}inif z =1 then 5 else 7 .

Because of the looseness of the let-be-such-that ex-
pression the condition expression in the if-then-else
expression can give both true and false. Therefore, it
is necessary to evaluate both the then-part and the
else-part. This means that the evaluation of this ex-
pression returns the set {5,7 }.

To illustrate how the semantic functions are af-
fected by the loose specification we now show how
simple unary expressions are evaluated.

>

EvalExzpr(mk-Unary(opr, €))(m)
let v_s = FvalEzpr(e)(m) in
if | & vs
then { ApplyUnary(opr, v) | v € v_s}
else {1}

Notice how the evaluation of the expression, e, re-
sults in a set of values. If just one of these values
is the bottom value, a singleton set with the bottom
element is returned. Otherwise, the operator is ap-
plied to each of the operands in the normal way by
means of ‘ApplyUnary’. The reader should keep in
mind that the formal definition of the semantics uses
a mathematical meta-language different from Meta-
IV and therefore we are able to work with bottom as
a value.

Since we have discussed the semantics of a con-
crete if-then-else expression we now show the seman-
tic function which evaluate such expressions.

EvalExpr(mk-If(¢,¢,a))(m) 2
let ¢_s = EvalEzpr(t)(m) in
if ts = { True}
then EvalEzpr(c)(m)
else if i_s = { False}
then EvalEzpr(a)(m)
else if t_s = { True ,False}
then EvalEzpr(c)(m) U
EvalEzpr(a)(m)
else {1}

Again, we see that a set of values is returned by
the evaluation of the test expression, ¢. If this set is
a singleton set with either True or False, the result
is found by evaluating either the consequence, c, or
the alternative, a. If the set instead consists of True
and False both parts are evaluated. Otherwise, the
singleton set with the bottom element is returned.
In this semantics the bottom element is given rather
‘demonic’ properties. In both of these semantic func-
tions the set is collapsed if bottom was possible in the
first evaluation.

The above examples should give the reader some
idea of how loose specification affects the semantics
of expressions.

4.2 Statements

In the case of statements, loose specification is always
interpreted as nondeterminism since statements can
only be used inside operations.

Presently, the signature of the function for evalu-
ating statements, ‘ EvalStmt’, is:

Stmt — MODEL —
IP(MODEL x { cont, exit } x VAL)

The reason for this non-obvious signature is the pos-
sibility of combining exit and return-statements with
nondeterminism. The denotation of a statement in a
specific model is a set of three-tuples. The first com-
ponent in each of these tuples is the possibly changed
model. The second component is a token indicating
whether this statement alters the order of evaluation.
If a statement is not exiting it is signaled by the to-



ken cont (continue). Exiting statements uses the to-
ken exit. The third component is used if the state-
ment returns a value. This component is used for
exit and return statements. If no value is returned,
the third component is simply nil. The set of such
tuples is caused by the possible nondeterminism of
the returned value and the possible nondeterminism
of the state components inside the model. Nonde-
terminism may even cause such a set to both have
exiting and non exiting elements at the same time.

‘FvalStmt’ provides denotations for both ter-
minating and non-terminating statements. Non-
termination is signaled by the empty set which is the
least fixed point of the lattice where the ordering is
subset inclusion. Thus, the semantics of statements
with loops is found by means of a least fixed point
operator, Y. It maps monotonic functions over com-
plete lattices to its least fixed point, as guaranteed
by Tarski’s theorem. If the functions are also con-
tinuous, then the least fixed point can be reached in
countably many iterations. However this property is
not essential since the semantics of the BSI/VDM SL
need not be computable.

Alternatively a meaning function and a termina-
tion function could have been used as in [Park79] and
[Jones87]. Such a termination function is supposed to
give the set of states over which termination is guar-
anteed. The meaning function gives denotations to
statements that terminate.

Another alternative that could be adopted is to use
continuations. The idea is to let every program point
(considering statements as a program) denote a con-
tinuation (i.e. a kind of state transformation denoted
by the “rest of the program”). Continuations were
first developed for modeling unrestricted gotos (see
[Strachey& Wadsworth74]), so it is much more power-
ful than the exit style present in Meta-IV. However,
such expressive power introduces further complica-
tion into an already complex language and the ap-
proach taken in the BSI/VDM SL is to make use of
the well-known “exit/trap” mechanism from Meta-
IV. These constructs can be used to raise and handle
exceptions; typically, these are extraordinary situa-
tions that may not be handled without otherwise dis-
rupting the order of evaluation.

To illustrate the semantics of a simple nondeter-
ministic exit statement, consider the statement:

exit (let z € {1,2} in z).
The result of evaluating this statement is:
{ (m,exit,1),(m,exit,2) },

where m is the model in which the statement is eval-
uated.

As mentioned in section 4.1, expressions with side
effects are excluded. However, value returning ope-
rations (which may have side effects) have been per-
mitted at the right hand sides of assignments and
def-statements (i.e. imperative let-statements).

We will now use an assignment statement and an
operation, Op, to illustrate how to use a deterministic
value returning operation in an assignment statement
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and how nondeterministic state values affect the se-
mantics.

Let st; and sty be state components that contain
respectively a set of natural numbers and a natural
number. Consider the assignment statement:

sty = O0p(7),
where the operation is defined as:
Op(z) (8t := z; return__ (cst; U {z})).

If, for example, the value of st; was equal to { 1,4}
before the operation call then the result of evaluating
the above assignment statement would be:

{(m + [ste—T7],cont,{1,4,7})},

where m is the model in which the statement is eval-
uated and + means overwrite. This is an example of
a call of a deterministic value returning operation.

Consider now the same situation, except that the
expression in the return statement has been replaced
by a loosely specified expression:

let € {12} in =

This expression evaluates to {1,2}. So in this case
the result of evaluating the assignment statement is:

{(m + [stg—T7],cont, 1),
(m + [ste—T7],cont, 2)}.

Finally, we will show a simplified version of the
semantic function for the evaluation of while state-
ments.

EvalStmt(mk-While(,0))(m) &
let 1= YAf. Am’.
U{ cases ec:
cont — if EvalExpr(t)(m")
then f(m")
else {(m", ec,v)}
exit — {(m",ec,v)}
| (m",ec,v) € EvalStmt(b)(m')} in
if EvalEzpr(t)(m)
then I(m)
else { (mcont,uil) }

It is simplified because ‘ EvalEzpr’ here is assumed
to return a single value. In the semantic definition
this has been taken care of in the same way as in
‘EvalEzpr’. This is left out because it does not im-
prove the understanding of the semantics of the while-
loop.

This function defines the semantics of while-loops
in the usual way. However, it takes both exit’s and
nondeterministic evaluation of the body, b, into ac-
count. Notice how the nondeterminism introduces
sets of sets, while the possibility of exiting statements
introduces a case choice.

5 Status and Perspectives

The status of our definition of a mathematical seman-
tics of the BSI/VDM SL is that it is complete, but
based on an abstract syntax dating from July 1988.
The abstract syntax has since been revised and so the



definition must now be brought up to date with cur-
rent thinking. Our understanding is that a full, com-
prehensive and complete mathematical semantics will
be ready for publication and input to BSI and ISO
ultimo December 1989.

It is believed that our current approach to a math-
ematical semantics for the BSI/VDM SL is generally
sound from both the stylistical and the foundational
points of view. The final version may therefore be
expected to follow the approach described here.
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