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Abstract

We present a tool-supported approach to the validation
of system-level timing properties in formal models of dis-
tributed real-time embedded systems. Our aim is to provide
system architects with rapid feedback on the timing char-
acteristics of alternative designs in the often volatile early
stages of the development cycle. The approach extends the
Vienna Development Method (VDM++), a formal object-
oriented modeling language with facilities for describing
real-time applications deployed over a distributed infra-
structure. A new facility is proposed for stating and check-
ing validation conjectures (assertions concerning real-time
properties) against traces derived from the execution of sce-
narios on VDM++ models. We define validation conjec-
tures and outline their semantics. We describe the check-
ing of conjectures against execution traces as a formally-
defined extension of the existing VDM++ tool set, and show
tools to visualise traces and validation conjecture viola-
tions. The approach and tool support are illustrated with
a case study based on an in-car radio navigation system.

1 Introduction

The development of real-time embedded control sys-
tems to high levels of assurance is a major technical chal-
lenge, particularly when software is to be distributed over
networked processors. The early development phases of
such systems are also often characterised by complexity and
volatility of requirements. In this environment, develop-
ers require tools that support the rapid evaluation of design
models against system-level temporal and functional prop-
erties. Such a validation activity helps to identify require-
ments and design defects before a commitment is made to
a particular design strategy. In these early development
phases, when developer time is at a premium, the cost ef-
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fectiveness and ease of use of validation tools is significant,
as well as the level of rigour supplied by the modeling lan-
guage and environment.

Our current work aims to use formal techniques in an
accessible and cost-effective manner to support validation
for models of distributed and embedded real-time sys-
tems. The approach is based on the Vienna Development
Method (VDM), an established formal method which has
been extended to support modeling of concurrent object-
oriented systems (VDM++ [5]) and real-time and dis-
tributed systems [20]. In this paper we define new exten-
sions to the modeling language and tools to permit the ex-
pression of system-level timing properties and support their
validation against timed traces derived from the execution
of scenarios on VDM++ models. The novel features of
this work are the language and semantics of validation con-
jectures over timed distributed VDM++ models and their
implementation in a proof-of-concept tool. The impact of
the work is primarily on model developers and analysts, en-
abling explicit consideration of system-level properties dur-
ing modeling process.

Section 2 introduces the current state of VDM++ tech-
nology. The extensions to accommodate checking of
system-level timing properties, called validation conjec-
tures, are shown in Section 3. These consist of language
extensions to allow the specification of validation conjec-
tures (Section 4) and formally specified tools extensions to
identify conjecture violations in the execution traces (Sec-
tion 5). We interleave the description of the language and
tool extensions with an example based on a distributed in-
car radio navigation system, introduced informally in the
remainder of this section. Finally the approach and further
work are discussed (Section 6).



1.1 Example: an In-car Radio Navigation
System

Our example, based on an in-car radio navigation sys-
tem, was introduced in the context of performance analy-
sis [21, 12] and also as a case study in the extension of
VDM++ to model timing requirements and distributed ar-
chitecture [20]. The navigation system consists of sev-
eral software applications running on a common distributed
hardware platform. The design challenge is to develop an
architecture capable of satisfying the requirements of the
individual applications. In developing such an architec-
ture, the designer will need feedback on system-level timing
properties of alternative models. The model presented here
reflects one of the proposals that was considered during de-
sign. It consists of three CPUs on an internal communica-
tion bus (Fig.1).
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Figure 1. Informal overview of the case study

There are two applications, ChangeVolume and Pro-
cessTMC, represented by the upper and lower groups of
gray boxes in Fig. 1. Each application consists of three
tasks. The ChangeVolume application increases the radio
volume in response to a user pressing a “volume up” key.
Within this application, the task HandleKeyPress takes
care of user interface input handling, AdjustVolumeUp
modifies the volume accordingly and UpdateScreen
displays the new volume setting on the screen. The
ProcessTMC application handles Traffic Message Chan-
nel (TMC) messages. TMC messages arrive at the
HandleTMC task where they are checked and forwarded to
the DecodeTMC task to be translated into human readable
text which is displayed on the screen by the UpdateTMC
task. The environment of the system is modeled by two ad-
ditional applications which inject stimuli and observe the
system response. The vBUS and vCPUQ are the virtual
bus and CPU on which the environment processes and the
environment-system communications take place.

Before embarking on a potentially expensive rigorous
development process, the system architect may wish to
explore whether a given design alternative, such as the

one shown above, will respect important system-level con-
straints. These constraints may be derived from require-
ments of potentially competing applications. We will use
the term validation conjecture to mean a property to be
checked against a model and the term validation to cover
the checking process. Some examples of validation conjec-
tures for the in-car navigation example are listed below:

C1: A volume change must be reflected in the display
within 35 ms.

C2: The screen should be updated no more than once every
500 ms.

C3: If the volume is to be adjusted upward and is not cur-
rently at the maximum, the audible change should oc-
cur within 100 ms.

C4: The volume is only allowed to be at the maximum level
for at most 10000 ms.

Validation conjectures may be inconsistent, possibly point-
ing to inconsistencies between applications’ requirements.
The validation process should help to identify such issues,
and suggest strengthening or weakening of the conjectures
against a specific design model.

2  VDM-++ Technology

VDM-++ is an object-oriented and model-based specifi-
cation language based on the Vienna Development Method.
It has a formally defined syntax, static and dynamic seman-
tics which extend those of the ISO Standard VDM-SL lan-
guage [1]. For a detailed introduction to VDM++, the reader
is referred to current texts [5] and the VDM Portal [14].

VDM++ supports the construction of abstract system
models composed of class specifications, each of which
contains definitions of data types, instance variables and
operations. Abstraction in data is provided through the
use of unconstrained types and abstract collections such as
sets, mappings and sequences. Functionality is modeled ab-
stractly in terms of operations which may be described ex-
plicitly, or may be underspecified, and may even be char-
acterised solely by postconditions. Data types may be con-
strained by predicate invariants and the invocation of op-
erations may be restricted by predicate preconditions. The
language is thus not in general executable, but has an exe-
cutable subset.

Extensions have recently been proposed to VDM++ in
order to better support the description and analysis of real-
time embedded and distributed systems [18, 19]. These in-
clude primitives for modeling deployment to a distributed
hardware architecture and support for asynchronous com-
munication.



2.1 Example VDM++ model

This section contains extracts from the VDM++ model
of the in-car navigation example initially presented in [20].
We focus on the system model rather than the environment
model. There are two independent applications that consist
of three tasks each. Tasks can be triggered sporadically (by
external stimuli or by receiving messages from other tasks)
or periodically (checking for available data on an input
source or delivering data to an output). Note that task activa-
tion by external stimuli can be used to model interrupt han-
dling. The interface handling tasks HandleKeyPress
and Hand1leTMC tasks belong to this category. The other
tasks in our system model are message triggered.

Application tasks are modeled by asynchronous op-
erations in VDM++. For example, Fig. 2 shows
the definitions of AdjustVolumeUp and HandleTMC,
which are grouped together in the Radio class. The
AdjustVolumeUp operation increases the instance vari-
able representing the volume and then asynchronously in-
vokes the operation UpdateScreen in the MMI object.
Note the reference to the RadNavSys class, which repre-
sents the system as a whole.

class Radio

values

public MAX nat = 10

instance variables
public volume : nat := 0

operations
async public AdjustVolumeUp: nat ==> ()
AdjustVolumeUp ( pno) ==
if volume <= MAX
then ( volume := volume + 1;
RadNavSys ‘mmi.UpdateScreen(1l, pno)
)i
async public HandleTMC: nat ==> ()
HandleTMC (pno) ==
RadNavSys ‘navigation.DecodeTMC (pno) ;

end Radio
Figure 2. The Radio class

At the system level, the model must show the alloca-
tion of tasks to computation resources. A special class CPU
is provided to create computation resources; each resource
is characterised by its processing capacity, specified by the
number of available cycles per unit of time and the schedul-
ing policy. Throughout this paper, the time unit is millisec-
onds. For this case study, fixed priority preemptive schedul-
ing is used, although our approach is not restricted to any

policy in particular. A special class BUS is provided to
create communication resources, each characterised by its
throughput, specified by the number of messages that can
be handled per unit of time and the scheduling policy that
is used to determine the order of the messages being ex-
changed. The granularity of a message can be determined
by the user. For example, it can represent a single byte or a
complete Ethernet frame, whatever is most appropriate for
the problem under study. For this case study, we use First
Come First Served scheduling, but again the approach is
not restricted to any policy in particular. An overview of
the VDM++ system model is presented in Fig. 3.

system RadNavSys
instance variables
—-— create the application tasks
static public mmi := new MMI();
static public radio := new Radiol();
static public navigation :=
new Navigation();

-— create CPU (policy, capacity)
CPUI : CPU := new CPU(<FP>, 22E6);
CPU2 : CPU := new CPU(<FP>, 11EG6);
CPU3 : CPU := new CPU(<FP>, 113E6);

—-— create BUS

-- (policy, capacity, topology)

BUS1 : BUS := new BUS(<FCFS>, T72E3,
{cpu1, cpU2, CPU3})

operations
—— the constructor of the system model
public RadNavSys: () ==> RadNavSys
RadNavSys () ==

( CPUl.deploy (mmi) ;
CPU2.deploy (radio) ;
CPU3.deploy (navigation) )

end RadNavSys

Figure 3. System model for the case study

2.2 Tool Support for VDM++

VDM-++ is supported by an industry-strength tool set,
called VDMTools, which is currently owned and further
developed by CSK Systems [2]. VDM++ and VDMTools
have been used successfully in several large-scale industrial
projects [17, 8, 10, 4]. The tools offer syntax, type and static
checking capabilities, code generators, a pretty printer and
an application programmer interface. The main support for
validation is by means of an interpreter allowing the execu-
tion of VDM-++ models written within the executable subset
of the language.



An important principle in the development of VDMTools
has been that of ‘taking one’s own medicine’. Most of the
components of VDMTools, including the type checker and
interpreter, are specified in VDM and VDM++. For exam-
ple, the specification of the interpreter embodies the op-
erational semantics of the language. When extensions are
proposed, it is necessary to first develop formal specifica-
tions for them and integrate them with the existing speci-
fications before developing the implementation. This for-
mal approach has proved particularly valuable in mastering
the implementation complexity of some components of the
tool set, and has in turn influenced the development of the
language. We return to this point when we describe tool
extensions to support validation in Section 5.

Scenarios defined by the user are essentially test cases
consisting of scripts invoking the model’s functionality. The
interpreter executes the script over the model and returns
observable results as well as an execution trace containing,
for each internal or bus event, a time stamp and an indica-
tion of the part of the model in which it appeared. A sep-
arate tool (an Eclipse plug-in) called showtrace has been
developed for reading execution traces, displaying them
graphically so that the user can readily inspect behaviour
after the execution of a scenario, and thereby gain insight
into the ordering and timing of exchange of messages, acti-
vation of threads and invocation of operations.

2.3 Example Analysis of Radio Naviga-
tion System Model

In order to illustrate how the VDMTools interpreter can
be used to examine different scenarios consider Fig. 4. This
is a small scenario including two tasks in the environment
for changing the volume and sending a TMC message. The
VolumeUpKey and TransmitTMC objects belong to the
environment. Each object is started and, once the system
has responded to their stimuli, various performance charac-
teristics are evaluated and returned. In addition to yielding
a result, the execution of the scenario produces an execution
trace. Note that our examples here deal with the execution
of a single scenario at a time. Interleaving of scenarios is
also possible and can be defined as a separate test case.

3 Extensions to Support Validation

The existing VDM++ and VDMTools framework has
been extended so that explicit logical statements of system-
level timing properties (validation conjectures) can be
checked against execution traces. Fig. 5 shows the show-
trace output resulting from the analysis of the four case
study validation conjectures C1-C4 using the extended
framework and the execution scenario defined in Sec-
tion 2.3.

class World

operations
public RunScenariol: () ==>
map seq of char to perfdata
RunScenariol () ==

( addEnvironmentTask ("VolumeUpKey",
new VolumeUpKey (10));
addEnvironmentTask (" TransmitTMC",
new TransmitTMC (10));
return { name |->
envTasks (name) .getMinMaxAverage ()
| name in set dom envTasks } ) ;

end World

Figure 4. Scenario for Radio Navigation Sys-
tem Model

The main window shows a fragment of the execution
trace. The times of significant events are displayed on
the horizontal axis. Processing on each architectural unit
is shown by coloured horizontal lines (colours are used to
denote denote thread activities, including start-up, kill and
scheduling). The thin arrows that go to and from buses in-
dicate message passing whereas the fat arrows going up and
down indicate thread swapping out and in respectively.

The features supporting validation are the list of conjec-
tures at the bottom of the window and the circular marks on
the traces that show conjecture violations. In Fig. 5, all the
conjectures have been checked against the execution trace.
In the example, based on the scenario shown above, conjec-
tures C1 and C2 are violated and C3 and C4 have passed.
The user can select one of the violated validation conjec-
tures and then the appropriate point in the visualisation is
displayed. In Fig. 5 this is done for conjecture C1 (see the
circles with ‘C1’ next to them). Here the first C1 circle in-
dicates the occurrence of the first of the events in the given
validation conjecture while the second one indicates the oc-
currence of the second event violating the constraint (in this
case a deadline that is not met). In order to graphically visu-
alise the place where a violation takes place it is easy to do
so when it is possible to always relate two event occurrences
with each other and that is the case with the different forms
of validation conjectures that is supported at the moment.

This paper describes how the extended framework is
constructed to support the form of validation illustrated
above. The two main elements of Fig. 5 are the validation
conjectures and the results of their evaluation. Section 4
gives an informal overview of validation conjectures. The
semantics of the conjectures (the result of their evaluation
over an execution trace) are embodied in the formal specifi-
cation of the extended tools, described in Section 5.
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Figure 5. Trace view showing conjecture violations

4 Validation Conjectures

Validation conjectures describe the temporal relation-
ships between system-level events that can be observed in
an execution trace. An execution trace may be thought of as
a finite sequence of records, one for each time unit. We use
a discrete abstraction of time by using natural numbers as
time values. Each record contains a set of event names for
the events that occurred at that time, and a snapshot of the
values of the instance variables in the system model at that
time.

Events are simply temporal markers; they use up no sys-
tem resources. Each event has a unique name and may
occur many times in an execution trace. However, at any
one time, there may be at most one occurrence of a given
event. Two kinds of system-level event are detectable in an
execution trace generated from a VDM++ model: opera-
tion events and state transition events. Operation events oc-
cur when operations are requested, activated, or terminated
(denoted #req (Op), #act (Op) and #£in (Op) respec-
tively). State transition events occur when a predicate over
the instance variables of a model becomes true.

Validation conjectures are predicates over execution
traces. We will write O(e, i, t) to indicate that the ith oc-
currence of event e takes place at time ¢. The variable %
ranges over the non-zero natural numbers N, and ¢, rep-
resenting time, ranges over the indices of the trace. For
example, the simple conjecture

O(#fin(MMI* UpdateScreen), 1, 50)

is true in a trace where the first occurrence of the event
marking the termination of the UpdateScreen operation
is at exactly time unit 50. Note that distinct occurrences of
an event must happen at different times and that the occur-
rence numbers increase incrementally over time'.

It is often necessary to check a conjecture that relates to
the specific values of some instance variables. For exam-
ple, a designer may wish to check that a variable reaches a
certain value at a specified time. In order to do this conve-
niently, we introduce the notion of a state predicate. A state
predicate is a predicate over the instance variables of the
system model. We will write £(p, ¢) to mean that the state
predicate p is true of the variables in the execution trace at
time ¢.

In stating a conjecture, it may be necessary to mark the
times at which a predicate becomes true. In order to sup-
port this, we introduce the notion of a state transition event
which contains a predicate and which occurs at any time
when the predicate becomes true.

The concepts defined so far are sufficient to construct
useful validation conjectures. In order to allow more ef-
ficient detection and appropriate display of violations, we
also identify specific forms or pattern of conjecture. When
such standard forms are used, we can invoke efficient de-
tection and display functions. In this section, we intro-

IThe relation © is similar to the occurrence relation © in Real-Time
Logic (RTL)[9], but we do not claim here to be using full RTL. The formal
definition of conjecture evaluation is given in VDM-SL for uniformity with
the tools framework (Section 5).



duce three such forms: separations, required separations
and deadlines. It should be stressed that these are not in-
tended to form a comprehensive language of validation con-
jectures. However, they illustrate the way in which formal
tool support can be tailored to situations in which such stan-
dard formats are used.

Intuitively, separation conjectures describe a minimum
separation between specified events, should the events oc-
cur. Required separations are separations in which the sec-
ond event is required to occur at or after the minimum sep-
aration. Deadline conjectures state that the second event
must occur before a deadline is reached after the occurrence
of the first event. Below, each conjecture pattern and its se-
mantics are introduced in turn.

A separation conjecture is a 5-tuple
Separate(eq, ¢, ea, d, m) where e; and eq are the names of
events, c is a state predicate, d is the minimum acceptable
delay between an occurrence of e; and any following
occurrence of ey provided that ¢ evaluates to true at the
occurrence time of e;. If ¢ evaluates to false when e;
occurs, the validation conjecture holds independently of
the occurrence time of e;. The Boolean flag m is called
the ‘match flag’, when set to true, indicates a requirement
that the occurrence numbers of e; and e; should be equal.
This allows the designer to record conjectures that describe
some coordination between events. For example, we may
wish to state that a stimulus and response events occur
together in pairs within some time bounds, so the ith
occurrence of the stimulus is always followed by the ith
occurrence of the response.

A validation conjecture Separate(es, c, e2, d, m) evalu-
ates true over an execution trace if and only if:

Vil,tl ~(9(61,z'1,t1)/\5(c,t1) =
_‘Hig,tg'(g(eg,ig,b)/\tl§t2<t1+d/\
(m = ilzig)/\(elzeg = i2:i1+1)

We want to allow this and the following expressions to
be used for the specification of conjectures concerning both
two occurrences of different event types (el # €2) and two
occurrences of the same event type (el = e2). In the lat-
ter case, we distinguish the first and the second instances
of the same event type by a requirement to their occurrence
numbers (e; = ez = 42 = ¢ + 1). The match flag
should be used with caution in this case, since it does not
make sense to combine the requirement about matching oc-
currence numbers with an expression about two instances
of the same event type.

The required separation conjecture is similar to the sep-
aration conjecture but additionally requires that the ey event
does occur. A conjecture SepRequire (e, ¢, ea, d, m) eval-
uates to true over an execution trace if and only if:

V’il,tl-0(61,i1,t1)/\5(c,t1) =
ﬁﬂigﬂfg'@(eg,ig,tg) AN <thb<ti+dA
(m = ilzig)/\((il:eg = i2:i1+1)/\
E'ig,tg*@(eg,i:;,tg)/\(m
= ilzig)/\(elzeg = 23211+1)

The Deadline conjecture places a maximum delay on the
occurrence of the reaction event. Again, the match op-
tion may be used to link the occurrence numbers of the
stimulus and reaction events. A validation conjecture
DeadlineMet(e, ¢, e, d, m) consists of a stimulus event,
condition and reaction event; if ¢ holds, d is the maximum
tolerable delay between stimulus and reaction. The conjec-
ture evaluates true over an execution trace if and only if:

Vip, t1 - O(er, i1, i) ANE(e, ) =
312,152 . O(eg,ig,tg) A\ tl § t2 S tl —+ d N
(m = i1:i2)/\(€1:€2 = ’LQ:Z1+1)

These basic forms of validation conjecture can be com-
bined. For example, a conjecture to validate the periodic
character of an event might take the form Periodic(e, p,j)
where e is the periodic event, p is the period and j the al-
lowable jitter. The conjecture might be defined to be true in
a given execution trace if and only if:

DeadlineMet(e, true, e, p + j, false) A
Separate(e, true, e, p — j, false)

evaluates to true over the same trace.

The three forms of conjecture identified above are by no
means exhaustive. For example, one might wish to state that
the non-occurrence of an event in a specified period should
trigger the occurrence of some other event. Expression of
non-standard conjectures will likely entail the use of the ba-
sic occurrence relation. Nevertheless, the approach of defin-
ing common forms of conjecture is extensible and allows
for tailored tool support of the kind discussed in Section 5.

4.1 Example Validation Conjectures

It is possible to use the simple language of validation
conjectures to state system-level timing properties in the
case study. In the following, we give concrete syntax rep-
resentations for the conjectures C1-C4 introduced in Sec-
tion 1. In most cases, the state predicate component of the
conjecture is omitted and treated as t rue. In all cases, the
match component m is omitted and defaults to false.

C1: A volume change must be reflected in the display
within 35 ms. In the Radio class, the Ad justVolumeUp
operation invokes the UpdateScreen operation in the
MMI. The conjecture is interpreted formally as a deadline
on the completions of AdjustVolumeUp and the next
screen update MMI ‘UpdateScreen. This is a weak state-
ment in that it does not tie the screen update to the specific
volume change event. It could be strengthened by adding



operation parameters to the conjecture to link the stimulus
and response. This can be done using the formal definitions
in Section 5. However, we omit this for simplicity.

deadlineMet (#fin (Radio‘AdjustVolumeUp),
#fin (MMI ‘UpdateScreen), 35)

C2: The screen should be updated no more than once ev-
ery 500 ms. This is interpreted as a separation constraint on
the MMI ‘UpdateScreen screen operation completions.

separate (#fin (MMI ‘UpdateScreen),
#fin (MMI ‘UpdateScreen), 500)

As a result of formalising and validating the conjecture,
the architect may observe the inconsistency between C1 and
C2 that can arise if a screen update has to be performed in
response to a volume change at a time less than 500 ms from
the last screen update. It may be appropriate to negotiate a
weakening in requirements in such as case.

C3: If the volume is to be adjusted upward and

is not currently at the maximum, the audible change
should occur within 100 ms. The current volume
is modeled by the value of the instance variable
(RadNavSys ‘radio.volume). The request to adjust
the volume is interpreted as a deadline. The noticing of
the audible change is interpreted as the termination of the
Radio ‘AdjustVolumeUp operation.

deadlineMet (
#reqg(Radio‘HandleKeyPress),
RadNavSys ‘radio.volume < Radio ‘MAX,
#fin (Radio ‘AdjustVolumeUp), 100)

Here again the architect may observe that the formalised
conjecture may be weak by allowing many key presses to be
serviced by only one volume adjustment event. A revised,
stronger, conjecture linking occurrences might be appropri-
ate here.

C4: The volume is only allowed to be at the maximum
level for at most 10000 ms. It is interesting to note that we
do not distinguish between the initiators in controlling the
volume but merely observe the resulting level. The maxi-
mum amount of time in which the volume is allowed to be
at the maximum level is set at 10000 ms.

deadlineMet (
RadNavSys ‘radio.volume >= Radio ‘MAX,
RadNavSys ‘radio.volume<Radio ‘MAX,
10000)

5 Extended Tool Support for Validation Con-
jectures

The VDMTools interpreter has been extended to record
additional data in the execution trace generated by running a

scenario and to use this to evaluate validation conjectures. A
further extension to showtrace allows violations to be iden-
tified and explored. In this section, we describe these ex-
tensions, focussing on those aspects that are relevant to the
efficient analysis of the validation conjecture forms identi-
fied in Section 4.

In accordance with the ‘taking one’s own medicine’ prin-
ciple for developing VDMTools, we began from the formal
specification of the interpreter before developing the code
to implement our extensions. The interpreter specification
is substantial — over 500 pages of VDM-SL interleaved with
informal explanatory text. Thus, VDM is used both as the
meta-language as well as the source language in the part
described in this section. One additional module called VC
has been added containing the formal descriptions of data
structures and operations for logging execution trace data
and for evaluating validation conjectures. The VC module
is only 400 lines of VDM-SL and below we will show ex-
tracts from this.

The intention is that, once a scenario has been executed,
it should be possible to evaluate a set of validation conjec-
tures over the execution trace. A further extension of the
showtrace tool permits the graphical indication of conjec-
ture violations on top of the visualisation of the simulation
of the deployed applications. This is intended to speed up
the error detection and correction cycle at the abstract de-
sign level because the detected violations act as counter ex-
amples that are easy to understand.

The vC module specifies efficient operations that can de-
termine the validity of a validation conjecture over a given
execution trace. If a violation is detected it will yield a tu-
ple of information that uniquely identifies for showtrace the
point at which the violation takes place. In order to pro-
vide for efficient checking of conjectures, the large execu-
tion trace file is not searched directly. Instead, the trace is
represented in an optimised form. The VC module state has
the following form:

state VCState of

ophistmap map AS 'Name to OpHist
instvarhistmap map AS 'Name
to InstVarHist
end

The state contains a mapping from operation names to
operation histories (OpHist), and from instance variable
names? to their histories (InstVarHist). The OpHist
type splits the execution trace for a given operation into
traces of the request, activation and finish events. Each
event trace is a sequence of records, each containing a
timestamp and record of the operation inputs (for a request

2The abstract syntax of VDM++ is described in a module called AS, in
which names of identifiers are denoted by the type Name.



event) or result (for a finish event) as well as a thread iden-
tifier. The history of changes made to instance variables is
stored with the actual value assigned to it (a semantic value,
denoted as VAL). Formally:

OpHist :: regs seq of Reg
acts : seq of Act
fins : seq of Fin;

Reg :: tim : nat

arg : [seq of VAL]

thrid : nat;

Act :: tim : nat
thrid : nat;

Fin :: tim : nat
result : [VAL]
thrid : nat;

InstVarHist = seq of InstVar;

InstVar :: tim : nat
val : VAL
thrid : nat;

All these type definitions include a field called thrid
that is used to keep track of the thread identification of the
requesting thread which is used when the threads and flow
of control is presented visually.

Having separated out the execution trace information in
this fashion one can check for possible violations of a given
validation conjecture. For example, the operation perform-
ing the check for a violation of a deadline conjecture on the
VC module state is defined as follows:

EvalDeadlineMet: DeadlineMet ==>
[ nat * ThreadId x
[nat] * [ThreadId] ]

EvalDeadlineMet (
mk_DeadlineMet (evl, p, ev2, max,match)) ==
if match
then
MatchCheck (evl, p, ev2, max, <MAX>, false)
else
AnyCheck (evl, p, ev2, max, <MAX>, false);

Different checks are made depending upon the match
value in the conjecture. If no violation is found, the op-
eration yields a nil value. Otherwise, it returns a tuple
indicating the location of a violation. This tuple contains
the time and thread identifier indicating the first event in
the validation conjecture ev1 and also the time and thread
identifier of the second event ev2 (if it does not occur at all
the special value nil is used again). Auxiliary operations
extract lists of events of interest and use these to evaluate

whether a violation occurred. As an example, consider the
MatchCheck operation presented below. This operation
performs a check for a violation of a conjecture in which
the m flag is true. Thus, we expect occurrence numbers of
the events linked in the conjecture to be the same.

MatchCheck: EventExpr x Pred x EventExpr x
nat * Kind * bool ==> [nat » ThreadId =
[nat] * [ThreadId]]
MatchCheck (evl, pred, ev2,delay, kind, req) ==

let listl = FindList(evl),
1list2 = FindList (ev2)
in
(for index = 1 to len 1istl do

let t1 = 1listl(index) .tim,
t2 = 1if index in set inds 1ist2
then list2(index) .tim
else <INF>
in
(if not PredSatisfied(pred,tl)
then skip
elseif t2 = <INF> and req
then return
mk_(tl,1listl(index) .thrid,
nil,nil)
elseif t2 <> <INF> and
Violation(tl,t2,delay, kind)
then return
mk_ (t1,1istl(index) .thrid,
t2,1ist2(index) .thrid)
)

return nil);

Within MatchCheck, the auxiliary operation
FindList extracts the list of a particular event’s oc-
currences, so the variable index corresponds to the
occurrence number. This checks all instances of the first
event ev1l and looks for a violation in the matching occur-
rence of ev2 (or if no matching is present whether ev2
is required). This operation illustrates violation checking;
the other algorithms are similar in nature. The violation
information for each validation conjecture is handed over
to the showtrace tool for visualisation.

If there were no need for predicates very efficient solvers
for propositional logic could be used. However, we need the
possibility to express the validation conjectures in a simple
form. The checking of predicates is carried out using the
PredSatisfied operation. It takes a predicate and the time at
which the predicate needs to be checked. This is defined as
follows:

PredSatisfied: Pred  nat ==> bool
PredSatisfied(pred,t) ==
let mk_Pred(var, op, num) = pred
in
if var in set dom instvarhistmap
then



let hist = instvarhistmap(var),
mk_InstVar(firstt,—-,-) = hd hist
in
if t < firstt
then return false
else (for i1 = 2 to len hist do
if hist(i-1).tim <= t and
t < hist(i).tim
then return
EvalOp(hist (i-1) .val,
op, num) ;
return
EvalOp(hist(len hist) .val,
op, num)
)

else return false;

The predicate is set to be false if the time requested is
before the instance variable in question has been initialised.
Otherwise it looks through the list of updates that has been
made to the instance variable and evaluates the operator at
the time requested.

6 Concluding Remarks

There is a considerable body of work extending formal
model-oriented specification languages to allow the expres-
sion of temporal properties alongside functionality. Some,
in common with VDM-++, aim to combine the expression of
temporal behaviour with object-oriented or modular struc-
turing. Possibly the closest examples are Timed RSL [6],
combinations of Timed CSP with Object-Z [3] and Timed
extensions to B such as [15]. The majority of these works
focus on support for verification of design steps by model
checking and proof rather than validation in early develop-
ment stages. None of them deal explicitly with deployment.
In the context of UML, the strand of research on validation
of timed system models based on a real-time profile [13, 7]
proposes the statement of ‘duration constraints’ between
events by means of observer state machines or OCL-like
expressions. Work on the UniFrame framework [16] places
a VDM++ model of a distributed real-time system as part
of a chain of formalisms for handling functional and non-
functional properties. The proposed tool chain includes
timed trace analysis based on VDM++ models, although
this proposal has not been implemented.

There has been considerable interest in the analysis of
formal models by animation based on the direct execution
of models (rather than a translated model or execution of
code derived from a model). There have been recent indus-
trial successes. For example, animation (extensive testing)
of an executable model plays a vital role in the validation of
an embedded integrated circuit for cellular telephones [10].
Liu’s work based on the SOFL language [11], which con-

tains elements derived from VDM, also supports direct an-
imation of models, in this case from systematically derived
execution scenarios.

The aim of our work has been to support the validation of
system-level temporal properties in an accessible and cost-
effective manner. How far have we gone towards achiev-
ing this? The approach has a formal basis, but the goal is
pragmatic. Building on an existing modeling framework in
VDM++ [20], we have presented a new semantically well-
founded facility for stating and checking system-level vali-
dation conjectures against traces derived from the execution
of models that describe distributed real-time systems. Tool
extensions have been defined formally and have been im-
plemented to proof-of-concept level. The outcomes of each
trace analysis are made accessible by using a graphical dis-
play and exploiting defined validation conjecture forms for
which specific violation detection and display features have
been defined. Together, these facilities enable the system
architect to adjust the functionality, its deployment, the ar-
chitecture or the conjecture itself.

It should be stressed that the validation of execution
traces does not replace formal verification: a failing conjec-
ture is the symptom of a possible design defect but a passing
conjecture is not a proof of correctness with respect to the
real-time constraints. Our objective here is to provide rapid
assessment of the key properties of a design model, help-
ing to identify deficiencies in requirements and system-level
conjectures in the very early phases of a high assurance de-
velopment process.

There are some limitations to the framework as devel-
oped so far. First, although our models are loosely speci-
fied, each scenario execution produces only one execution
trace because the implementation of the operational seman-
tics enforces determinism in order to ensure reproducibility
over multiple traces. Within a single execution, we do allow
non-determinism. Second, the tools do not yet support on-
the-fly evaluation of validation conjectures, although this
could readily be accommodated. Third, we need to widen
the range of conjecture forms for which specialised check-
ing and display tools are available.

There are several other directions in which the proof of
concept work reported here might be extended. Once con-
jectures have been defined and have been used to validate
the execution of the model (which also serves as a valida-
tion of the conjectures themselves), they can be used (with
event transformation) to validate log files generated by the
final implementation of a system. A further important task
is to begin to evaluate the reliability of the results as an aid
to decision-making among design alternatives. Further, the
validation framework discussed here might be extended to
support the evaluation of fault tolerance strategies at the
architectural level. Experiments combining the interpreter
(executing a model of a controller) with a continuous time



simulator suggest that it is possible to model faults at the
interface between the two without clouding the models of
either the controller or the environment process. Finally, we
are investigating the provision of automated proof of vali-
dation conjectures on models in constrained situations.

The purpose of the work reported here has been to en-
hance the range of tools available to designers of distributed
embedded real-time systems in early development stages.
The approach is based on the use of abstract system mod-
els that have a formal basis and so can benefit from rigorous
analysis. The priority has been to provide rapid feedback on
the timing properties of abstract system models by exploit-
ing information gathered during the execution of scenarios.
This form of validation is not seen as a solitary technique,
but can be used in conjunction with other forms of analysis
to support design-time trade-off and decision-making.
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