
PICGAL� Practical use of Formal Speci�cation

to Develop a Complex Critical System

Lionel Devauchelle�� Peter Gorm Larsen� and Henrik Voss�

� AEROSPATIALE espace et defense� department SY�YI �BP � ���� F �� ��� Les
Mureaux CEDEX� FRANCE

� IFAD 	The Institute of Applied Computer Science
� Forskerparken ��� DK�����
Odense M� Denmark

Abstract� This paper reports on the experiment PICGAL which aims
to assess the bene�ts of using VDM to develop high reliability related
software in the space industry in a practical way The application used in
this project is a code generator from a next generation environment to be
used in the development of ground application software for boosters such
as ARIANE V The experiment is constructed as a parallel development
of the code generator� using the conventional approach and using formal
speci�cation This allows detailed measurements of the e�ects resulting
from the introduction of VDM This work is adding to the existing body
of evidence of the e�ect of using a moderate amount of formal methods
in an industrial context in a new critical domain This paper provides
an overview of the domain� the application and it shows how the formal
speci�cation has been structured Finally� results and key lessons are
presented

� Introduction

AEROSPATIALE Espace � Defense is prime contractor or industrial architect
of space launchers and vehicles� and the critical role of software in this sector is
increasing continuously� In the experiment described in this paper� we focus on
the highly reliable ground application software development environment used
to develop the required control command functionality� In order to decrease the
cost of such developments as well as the associated time� a future generation
environment entitled SCALA is being studied by AEROSPATIALE�

The SCALA environment will include a code generator from the control spec�
i�cation language SCALA to the ANSI C programming language� The depend�
ability of the ground application software will rely on the reliability of the code
generator� This component is a high dependability related piece of software�
which therefore should be carefully checked and validated� In the PICGAL�

� PICGAL is an acronym for �Process Improvement experiment of a Code Generator
to the Ariane Launcher� and the project is supported by the European Commission
	ESSI project � PIE no �� ���

The copyright for this paper is held by AEROSPATIALE� It must not be reproduced without

written permission from AEROSPATIALE� Requests should be made to the �rst author of this
article� c� � AEROSPATIALE � �����

project this code generator is developed twice� One development uses the con�
ventional development approach at AEROSPATIALE with natural text in the
early phases of the life�cycle� and another development uses VDM with the IFAD
VDM�SL Toolbox and the associated VDM�SLtoC�� Code Generator� During
the project a number of metrics are being collected to measure the e�ect of using
the VDM technology�

The Vienna Development Method �VDM� 	
� is one of the most mature
formal methods� primarily intended for formal speci�cation and subsequent de�
velopment of functional aspects of software systems� Its speci�cation language
VDM�SL 	�� is used during the speci�cation and design phases of a software
development project� and it supports the production of correct high quality soft�
ware� VDM�SL is standardised under the auspices of the International Standard
Organization �ISO� 	��

A modular extension to ISO VDM�SL is supported by the IFAD VDM�SL
Toolbox 	�� �� ��� The Toolbox supports extensive type checking� LaTeX pretty�
printing facilities� test coverage� code generation� interpretation and many de�
bugging facilities� A large subset of IFAD VDM�SL can be execute by the existing
interpreter of the Toolbox� As part of the modular extension the IFAD VDM�
SL Toolbox supports Dynamic Linked modules �DL modules� 	��� DL modules
are used to describe the interface between modules which are fully speci�ed in
VDM�SL and parts of the overall system which are only available as C�� code�
This facility enables users to employ existing C�� libraries while a speci�cation
is being interpreted�debugged�

Related work has been carried out using an earlier version of the same tech�
nology by British Aerospace for communications software 	�� ��� ��� The results
of this work were very promising and showed that the use of formal speci�cation
for critical components was slightly less expensive than the conventional way�
and in addition an exceptional situation was discovered already at the system
design phase which was never discovered with the conventional development pro�
cess� At the time of this experiment no code generator for VDM�SL was available
so the �nal code was produced manually� In the PICGAL experiment we use the
VDM�SLtoC�� Code Generator�

In line with the experiment at British Aerospace we have focused� on purpose�
on using VDM�SL as a high�level language to describe a model of the system�
Thus� we have not stressed formal proof or re�nement at any stage in this project�
The motivation for this more pragmatic approach is that we feel that it is better
�rst to learn to think in terms of VDM concepts and be able to validate such
a model using well�known techniques such as testing� However� we consider this
to be a �rst step towards a more rigorous development of industrial software
systems� When the engineers are con�dent with this technology it may be feasible
to introduce more components from the VDMmethodology and introduce formal
veri�cation� We believe that making too large a step in one go would be too
di�cult for industrial engineers in most cases�

The copyright for this paper is held by AEROSPATIALE� It must not be reproduced without

written permission from AEROSPATIALE� Requests should be made to the �rst author of this
article� c� � AEROSPATIALE � �����

This paper is organised as follows� in the next section a short introduction
to the application domain and the purpose of the SCALA environment is given�
In Section � it is explained how the experiment is organised in a parallel devel�
opment of the SCALA to C code generator� This section also includes material
about the background for the use of VDM and the comparisons and tests to be
performed during the experiment in order to assess the bene�ts of using VDM
in this application� The following three sections present an overview of the spec�
i�cation and the way it is being validated� Section � presents some results from
the project and this is followed by a section illustrating how we envisage this
kind of technology to be used in the space domain in the future� Finally� a few
concluding remarks are given�

� The Application Domain

In this section an introduction to the control command systems domain and the
SCALA environment is given�

��� Control Command Systems

The control command systems are ground systems used to check�out the
di�erent parts of a booster during its assembly process and to perform the lift�
o�� Their main functions are�

� to bring the booster or a part of it into operation�
� to test the availability of the booster equipment�
� to synchronise the operation of the booster with external events during lift�
o�� and

� to monitor the equipment in order to keep the booster safe and to avoid
damage to the environment�

An overview of a control command stand is shown in Fig� �� Many of these
components are not of relevance to this project� but it provides an idea about
the environment in which the work presented here is carried out� For this paper
the most important part is the software architecture which is divided into three
layers�

Level � includes the operating system and the hardware handlers�
Level � provides basic services for the application software such as sequencing�

and basic check�out functions� and
Level � is the application software layer� It is to this kind of software that the

SCALA code generator described in this paper is to be applied�

��� The Purpose of the SCALA Environment

In the development of Level � software components of a control command ap�
plication there is currently a relatively long turn�around time when require�
ments changes are introduced� To increase the productivity and decrease the

The copyright for this paper is held by AEROSPATIALE� It must not be reproduced without

written permission from AEROSPATIALE� Requests should be made to the �rst author of this
article� c� � AEROSPATIALE � �����

�������
����	�
��

��������	

������	
��	�������

����

�
�

�
�

�	
�

�
��

	
�

�
�

�	
�

�
��

�
�

�
�

	
�

�
�	

�
�

����

	
�

�
�

�
�

�

�

�

�
�

�	

�

�
�

�

�
�

�

�

�
�

�
�

��

����

�
�

�
	

�
�

�	
�

�

�
�

�
�

��
�

�
�

�

�

�������
�����������

����

Fig� �� Control Command Stand Overview

turn�around time of the application software� AEROSPATIALE is planning to
produce a new development environment named SCALA� This environment will
include the following tools�

� a speci�cation editor�

� a speci�cation validation tool� and

� an automatic code generator�

The most critical part of this environment is the code generator� The re�
liability of the developed application will depend on it� This automatic code
generator will automatically translate SCALA speci�cations into the ANSI C
programming language�

SCALA will be used by booster equipment engineers or system engineers
to specify easily readable� comprehensive and unambiguous control command
requirements as shown in Fig� ��

The copyright for this paper is held by AEROSPATIALE� It must not be reproduced without

written permission from AEROSPATIALE� Requests should be made to the �rst author of this

article� c� � AEROSPATIALE � �����

�������
����	�
��

�	���
����������

������������
��������

���	
�����
�

����������

����������

��������

Fig� �� SCALA Development Environment Use

� Description of the Experiment

��� Parallel Development

Fig� � provides an overview of the di�erent phases of the two parallel and
separate developments of the code generator� The initial requirements phase
determined the purpose of the generator but do not indicate its structure� the
algorithms to be used or the output code� The general design phase is common
to both developments� the baseline and the PICGAL line� With the structure of
the generated code� this phase provides the functions of the generator as well as
some required algorithms �e�g� the naming of data��

The conventional development consists of the following steps�

� software design to re�ne the general design in accordance with the imple�
mentation constraints�

� coding and unit testing� and
� integration�

The VDM development consists of the following steps�

� architecture design to re�ne the general design in accordance with the VDM
modelling principles�

� VDM modelling�
� speci�cation test�
� code generating through the VDM tool and complementary coding in C���

The copyright for this paper is held by AEROSPATIALE� It must not be reproduced without

written permission from AEROSPATIALE� Requests should be made to the �rst author of this
article� c� � AEROSPATIALE � �����

SCALA Generator
Initial Requirements

Software Design Architecture Design

VDM ModellingCoding/Integration

C Baseline Code C++ Generation

Test

General Design
Base line PICGAL line

Test Selection

Fig� �� PICGAL Project Phases

In addition� a test environment testing both systems with the same test cases
is developed� In order to prevent the results from being biased by the skills of the
developing engineers� one key engineer is used on both developments� In order
to illustrate the bene�ts of the VDM approach this engineer always work on the
baseline development before dealing with the corresponding VDM work�

��� Background for the use of VDM

The AEROSPATIALE team had no prior experience with formalmethods� VDM
was chosen because of the availability of strong tool support in form of the IFAD
VDM�SL Toolbox� The team was trained by IFAD in VDM modelling and use
of the di�erent features of the VDM�SL Toolbox during two one week courses�

During the project� IFAD has been acting as a VDM consultant� Periodically
IFAD has reviewed the VDM model developed by the AEROSPATIALE team�
However� both in the consultancy and in the reviews IFAD has only pointed
out problems and suggestions for the kind of constructs which could be used to
improve a given speci�cation� No part of the speci�cation has been written by
IFAD so that a fair comparison in the experiment can be provided�

The copyright for this paper is held by AEROSPATIALE� It must not be reproduced without

written permission from AEROSPATIALE� Requests should be made to the �rst author of this
article� c� � AEROSPATIALE � �����

SCALA to C
Transformation

SCALA
AST

SCALA
File

Front-end
(DL module)

Back-end
(DL module)

VDM-SL

C AST

C files

Fig� �� The general structure of the SCALA to C code generator

� Structure of the VDM Model

In this section we will present the architectural structure of the SCALA to
C code generator� The general structure of the speci�cation is presented and
subsequently broken down into a modular structure showing the dependencies
between these modules�

��� General Structure of the Speci�cation

The purpose of the �nal code generator is to translate a SCALA ASCII �le into
C ASCII �les ��cc and �h �les�� VDM�SL does not provide I�O facilities so
this notation cannot be used for the entire translation� Thus� the code generator
has been divided into three components as shown in Fig� �� The �rst phase
is the front�end� The purpose of the front�end is to parse the SCALA ASCII
�le and produce an intermediate VDM�SL representation in terms of a SCALA
abstract syntax tree� In the second phase the VDM�SL speci�cation transforms
the abstract syntax of SCALA into the abstract syntax of C� The third part is
the back�end� and it converts the C AST into �les containing the concrete ASCII
representation of the generated C program�

The front�end and the back�end are written directly in C��� In order to
include these parts in the VDM�SL speci�cation dynamically linked modules
have been used� This enables the VDM�SL part to be interpreted in combination
with the front�end and the back�end�

The copyright for this paper is held by AEROSPATIALE� It must not be reproduced without

written permission from AEROSPATIALE� Requests should be made to the �rst author of this
article� c� � AEROSPATIALE � �����

SCALA_AS BDO_AS

CG

TRACE

FUNC_INSTR COMP_INSTR

GEN_TRANSF

C_AS

BC

SP_AS

Fig� �� Speci�cation Module Overview

��� Modular Structure of the Speci�cation

The modular structure of the speci�cation and the dependencies between the
di�erent modules can be seen in Fig�
� An arrow between two modules indicates
that the �rst module is using constructs from the second one�

The main module is the CG module which is responsible for the overall code
generation of a SCALA speci�cation into a number of C �les� It needs infor�
mation about the abstract syntax of the SCALA notation� SCALA AS� and the
operational database information�BDO AS providing informationof the data used�
The transformation of di�erent kinds of instructions takes place in respectively
the FUNC INST� COMP INST and GEN TRANSF modules� The abstract syntax and
the functions to build C abstract syntax are placed in C AS and BC� The SP AS

module provides an interface to the subprograms used as level � services� Finally�
the TRACE module is used to manage trace and error messages�

� Transformation of a selected SCALA Instruction

The SCALA language contains approximately �� di�erent statements dealing
with actions of setting� acquiring� checking and computing as well as with the
associated data management�

In this section we will show how the transformation from SCALA to C of
a single SCALA instruction is speci�ed using VDM�SL� The transformation of
each instruction is documented using�

The copyright for this paper is held by AEROSPATIALE� It must not be reproduced without

written permission from AEROSPATIALE� Requests should be made to the �rst author of this
article� c� � AEROSPATIALE � �����

�� Examples of the SCALA instruction and its corresponding C code in di�erent
cases�

�� Textual description of the steps in the transformation�
�� A formal VDM�SL de�nition of the transformation�

In order to illustrate the approach we show below how the SCALA instruc�
tion AFFECTER �meaning �change� in French� is transformed into C� In addition
to the items above� we have included the de�nition of the abstract syntax for
the AFFECTER instruction and the abstract syntax de�nition of C needed to un�
derstand the VDM�SL de�nition of the transformation�

The SCALA instruction AFFECTER and its corresponding C code can be di�
vided into the following �ve cases�

SCALA instruction Corresponding C code

AFFECTER var� ind� var� ind� var��ind���� � var��ind����

AFFECTER var� ind� var� var��ind���� � var�

AFFECTER var� var� ind� var� � var��ind����

AFFECTER var� var� var� � var�

	in case of numeric copy

AFFECTER var� var� strcpy�var��var�	

	in case of string copy

The abstract syntax of the AFFECTER instruction is de�ned below� The AFFECTER
instruction will always have a variable� var�� on the left�hand side of the assign�
ment and a variable or a value� var�� on the right�hand side of the assignment�
Furthermore� var� and var� can have optional indices� ind� and ind�� which
can be values or variables�

Affecter

 var�
 Variable

ind�
 �Variable � Valeur�

var�
 Variable � Valeur

ind�
 �Variable � Valeur��

As shown in the table above� the AFFECTER instruction is transformed into
an assign statement or a function call to strcpy� The C abstract syntax of a
function call is de�ned as�

FctCall

 fct
 Id

arg
 seq of Expr

In order to build C abstract syntax trees a number of auxiliary functions are
de�ned� The function GenFctCall is one of those and it is used to build a C
function call� A general principle in the speci�cation has been to build C AST�s
only using such auxiliary functions� That is� nodes like FctCall will never be
built using a record constructor expression anywhere else than in the auxiliary
functions for this purpose�

The copyright for this paper is held by AEROSPATIALE� It must not be reproduced without

written permission from AEROSPATIALE� Requests should be made to the �rst author of this
article� c� � AEROSPATIALE � �����

GenFctCall
 Id seq of Expr �� FctCall

GenFctCall�fct�args	 ��

mk�FctCall�fct�args	

The function TransformAffecter formalises the transformation from Affecter

to C Stmt� The function makes use of some de�nitions which are not included in
this paper� These can be divided into two main categories� �� General auxiliary
functions like DataType� which is used to look up the type of the variable on
the left�hand side of the assignment� and �� functions to build C AST�s �GenId�
GenIntegerLit� GenFctCall� GenArrayApply and GenAsgnStmt��

TransformAffecter
 Affecter �� Stmt

TransformAffecter�mk�Affecter�var��ind��var��ind�		 ��

let id� � GenId�var�	�

id� � GenId�var�	�

one � GenIntegerLit��	

in

if DataType�var�	 � �car�

then GenFctCall�StrCpyId��id��id��	

else let e� � if ind� � nil

then id�

else GenArrayApply�id��GenMin�id��one		�

e� � if ind� � nil

then id�

else GenArrayApply�id��GenMin�id��one		

in

GenAsgnStmt�e��e�	

pre DataType�var�	 � �car� �� ind� � nil and ind� � nil

Notice that the structure of the TransformAffecter function is structured
into �ve di�erent cases corresponding to the di�erent cases of the AFFECTER in�
struction� The �rst let expression simply provides a name for the two identi�ers�
id� and id� and the integer one� In case the left�hand side variable is de�ned
to be a string the standard string�copy function must be called� Otherwise an
assignment statement is made with or without indexing in an array depending
on the value of the index parts of the AFFECTER instruction�

The precondition of TransformAffecter documents that if variable var�

is a string then the instruction must have the form AFFECTER var� var�� This
strategy has been used to document assumptions about the SCALA speci�cation
used as input to the code generator� In addition to preconditions it has appeared
to be very valuable to use invariants e�g� on the SCALA abstract syntax to
document assumptions about SCALA �les and instructions�

� Testing the VDM Speci�cation

The speci�cation of the SCALA to C code generator is tested at two levels�

The copyright for this paper is held by AEROSPATIALE� It must not be reproduced without

written permission from AEROSPATIALE� Requests should be made to the �rst author of this
article� c� � AEROSPATIALE � �����

VDM-SL
spec.

Generated
C++ code

Compare

Input

Actual result

Expected result

OK

Error

Fig� �� Speci�cation Test Overview

� at speci�cation level using the Toolbox�s interpreter and
� at implementation level using the automatically generated C�� code pro�
duced by the VDM�SLtoC�� Code Generator�

At both levels test coverage information is collected during the tests and
metrics are used for comparison with the conventionally developed SCALA to
C code generator�

In order to facilitate the test procedures a test environment has been de�
veloped� This test environment is common to both levels of testing� and it is
illustrated in Fig� �� It consists of�

� a graphical user interface�
� test drivers �UNIX scripts� for both levels of testing�
� test cases and expected results�
� editors and browsers to view results of tests� test coverage� create new test
cases and update existing test cases�

� report �log� generation facilities�
� history information about earlier tests� and
� con�guration management interface to the speci�cation and implementation
of the code generator�

This testing environment enables easy measurement of code metrics for the
di�erent versions of the developments�

� Measured Results

��� Work Amount

The total amount of work turned out to be the same for both developments if
the two weeks of direct training in VDM�SL and the C�� code generator are
omitted� However� the additional time to get acquainted with the technology is
included in this �gure� Since this was the �rst project where the Aerospatiale
team used VDM we estimate that in a new project� this team would be able to
develop another system with less e�ort using the VDM technology�

The copyright for this paper is held by AEROSPATIALE� It must not be reproduced without

written permission from AEROSPATIALE� Requests should be made to the �rst author of this

article� c� � AEROSPATIALE � �����

��� Test Coverage� Size and Speed of code

For the �nal source �les from the baseline and VDM development a number of
metrics was collected� In the table below some of these are shown�

C VDM C�� Total
baseline model generated VDM

from VDM C��

Total lines ��� ��
� ���� ��
�

Actual lines ���� ���
 ����� �����
Functions �� ��
 ��
 ���
Test coverage � � � � �� � �� �
CPU speed ��� � �� �

The di�erence between most of these �gures can be explained by the di�er�
ence in the overall architecture of the two developments� The general approach
of the C code produced in the baseline project is to directly translating from the
sequence of characters in the various input �les to the corresponding output �les�
As shown in Fig� � the VDM development is structured into three parts �input
processing� transformation between abstract syntax trees� and output process�
ing�� Naturally this more structured approach requires more types and functions
to be de�ned than the direct approach� We believe that this is the main reason
why the size of the C baseline code and the VDM model is approximately equal
�the type de�nitions of the SCALA abstract syntax and the C abstract syntax
alone is �� � of the VDM model�� The VDM approach has also structured the
model into signi�cantly more functions than the C baseline development ���

versus ���� Concerning the test coverage it is slightly higher in the VDM model
using the same set of test cases� The test coverage of the generated C�� code
is rather low but this can be explained by the defensive programming style used
by the C�� code generator� The main surprising result in this experiment was
that the speed of the generated code actually was signi�cantly faster than the
hand coded C code from the baseline development� This is not because the C��
code generator is producing outstanding fast code� so it can only be explained
by a better design encouraged by the use of VDM�

��� Lessons Learnt

The pragmatic approach focusing on validation of the VDMmodel using conven�
tional testing techniques has shown to be appropriate for an application such as
the code generator from SCALA to C� In comparison to a conventional baseline
process� the VDM�SL notation has shown to be an adequate software speci�ca�
tion language to be used after the engineering design phase to check requirements
and to reduce functional complexity� The formalism is unambiguous allowing di�
rect code generation for a large subset of VDM�SL� The VDM modelling allowed

The copyright for this paper is held by AEROSPATIALE� It must not be reproduced without

written permission from AEROSPATIALE� Requests should be made to the �rst author of this

article� c� � AEROSPATIALE � �����

a better structured� more �exible and general development than the conventional
way� This resulted in a better quality code generation from SCALA to C�

The VDM�SL notation proved to be adequate to model this application by
providing the necessary constructs� keeping the data in a logic form in the func�
tional description and by being capable of checking the generation algorithm�

Considering the extensive use of the interpreter and of the C�� code gener�
ator made in this experiment� most of the bene�ts accounted for come from the
tool support provided by the IFAD VDM�SL Toolbox� In particular the ability
to obtain fast feedback from a model using the interpreter and the powerful
type�checking capabilities turned out to be valuable�

The following points have been learnt from the experiment �

Introduction of the VDM technology	 Initial training �� weeks� and the
assistance of IFAD�s consultants were su�cient to enable a correct use of the
technology� Naturally� better skilled people would have bene�ted more from
the particular notation existing in the VDM language� Trying to introduce
the model to engineers who had not been trained turned out to be di�cult�
A general introduction to the basic concepts of formal methods is missing
in order to spread the understanding of formal languages among the data
processing engineers�

Scope of use	 Formalmethods are applied to the speci�cation �eld of a critical
software component and not of a whole software system� The VDM tech�
nology deals with functional requirements without o�ering easy modelling
of hardware or real�time constraints� However� the VDM language covers a
large �eld of data processing and can be used beyond small automatic logical
security systems�

The reliability domain	 The reliability of the software comes from careful test
coverage measurements available from the VDM�SL Toolbox� The VDM lan�
guage allows the tracking of invariants� pre� and post conditions which are
important points in order to prevent large development teams from misun�
derstandings and software units from discrepancies�

Work e
ciency	 After requirements capturing� speci�cation using formalmeth�
ods can be applied to functional requirements in order to be modelled and
checked� The work e�ciency comes from the use of a high level language
associated with an interpreter �which makes partial test during the mod�
elling� and a code generator� However� the use of the VDM notation as a
programming language turned out to be as productive as the C language
�same programming time for the same size program�� The interpreter allows
tests at the modelling level in order to clearly identify the behaviour of the
VDM concepts right after formulating them�

� A Possible Future Use

According to the lessons learnt in the experiment� the VDM technology is a
highly e�cient modelling tool and allows functional test coverage measurement

The copyright for this paper is held by AEROSPATIALE� It must not be reproduced without

written permission from AEROSPATIALE� Requests should be made to the �rst author of this
article� c� � AEROSPATIALE � �����

Requirements
Functional

Requirements

Operational
Test

Reliable
Running
Software

System
Design

Software

Program

VDM
Prototype

Cases
Test

Test
Results

Automatic
code

generation test cases

Reusing

Interpreter

Feed-back

development

traditional

Usual

by VDM
modelling

experts

Questions

Requirements
Non-functional

specification

Fig� �� Future Development Process Using the VDM Technology

at speci�cation level� So� the VDM technology could be used by designers to
check the accuracy� the completeness and the coherence of the functional re�
quirements of critical software components�

Even with the use of VDM we feel that the natural language has to be
maintained to write such requirements because it is commonly used in space
projects and it belongs to the European industrial background� However� this
does not prevent developers from using the VDM technology to analyse the
requirements� In Fig� � it is illustrated how we envisage that the development
process could be adjusted to incorporate the VDM technology in a practical way
in space applications� In case the natural language explanation and the formal
de�nition are in con�ict with each other there must be a clear de�nition of which
one takes precedence� We propose that the formal de�nition shall be the correct
one if such situations should occur� but it is not certain that such an approach
would be politically acceptable�

For natural language requirement speci�cations it is of primary importance
to remove all discrepancies� misunderstandings and �aws that would prevent
a reliable achievement� In a �rst step� formal method experts could use the
VDM technology to model the functional requirements coming from the system
design in order to detect any discrepancy or inaccuracy� This model could be
interpreted in order to check the requirements and to study test cases to get an
optimal functional test coverage� In a second step� the operational software could

The copyright for this paper is held by AEROSPATIALE� It must not be reproduced without

written permission from AEROSPATIALE� Requests should be made to the �rst author of this

article� c� � AEROSPATIALE � �����

be developed as usual� taking into account all the requirements �operational and
functional� and could bene�t from the code automatically generated from the
VDM model� The test cases used at speci�cation level are selected to a high level
of test coverage using the test coverage facility from the VDM�SL Toolbox� All
these test cases are then reused for the validation of the �nal program�

	 Concluding Remarks

In this experiment we have not used the methodology part of the formal method
VDM� We have taken a pragmatic approach and mainly used the VDM�SL nota�
tion for a high level description of the system under development� In comparison
to a conventional process� the VDM�SL notation has showed to be an adequate
software speci�cation language after the engineering design phase� The formal�
ism is unambiguous and allow direct correct code generation for a large subset
of VDM�SL�

The VDM�SL notation proved to be adequate to model a code generator
by providing the necessary constructs� keeping the data in a logic form in the
functional description and in giving the capability of checking the generation
algorithm�We have to point out that such a critical application does not include
any synchronisation or real�time needs� If this had been the case we do not expect
that we would be able to use the VDM�SLtoC�� Code Generator� and VDM�SL
might not be the best notation to use for such an application� We believe the
main bene�ts of this particular notation is the powerful tool support which is
provided by the IFAD VDM�SL Toolbox�

The VDM�SL notation was found easy to use after the �rst one�week training�
A second week of training was used to upgrade the engineers from C to C�� and
showing how to interface to the generated code from the VDM�SLtoC�� Code
Generator� However� it turned out that engineers who had not been trained had
di�culty in understanding the VDM model being produced�

The speci�cation has been written using an executable subset of VDM�SL on
purpose� Dynamic link modules have been used to interface the speci�ed parts
with input and output to and from �les� This enabled the speci�ers to use the
interpreter�debugger functionality from the Toolbox on the test arguments used
for the �nal code as well� In addition� this also meant that we did not have to
write a lot of C�� code manually�

Acknowledgements

We would like to thank the deputy manager Daniel Claude for setting up this
project and the Commission of the European Union for �nancially supporting
the project� Special thanks also go to the members of the development teams
in particular to Michelle Lesage� Dennis Couturier and Robert Pastor� Finally�
we would like to thank Sten Agerholm� Paul Mukherjee� Anne Berit Nielsen and
Ole Storm for their valuable comments to an earlier version of this paper�

The copyright for this paper is held by AEROSPATIALE� It must not be reproduced without
written permission from AEROSPATIALE� Requests should be made to the �rst author of this

article� c� � AEROSPATIALE � �����

References

� John Dawes The VDM�SL Reference Guide Pitman� ���� ISBN �������������
� Ren�e Elmstr�m� Peter Gorm Larsen� and Poul B�gh Lassen The IFAD VDM�SL

Toolbox� A Practical Approach to Formal Speci�cations ACM Sigplan Notices�
��	�
������� September ����

� John Fitzgerald� Peter Gorm Larsen� Tom Brookes� and Mike Green Applications
of Formal Methods� chapter �� Developing a Security�critical System using For�
mal and Convential Methods� pages ������� Prentice�Hall International Series in
Computer Science� ����

� Brigitte Fr�ohlich and Peter Gorm Larsen Combining VDM�SL Speci�cations with
C�� Code In Marie�Claude Gaudel and Jim Woodcock� editors� FME���� Indus�

trial Bene�t and Advances in Formal Methods� pages ������� Springer�Verlag�
March ����

� Cli� B Jones Systematic Software Development Using VDM Prentice�Hall Inter�
national� Englewood Cli�s� New Jersey� second edition� ���� ISBN �������������

� Peter Gorm Larsen� John Fitzgerald� and Tom Brookes Applying Formal Speci��
cation in Industry IEEE Software� ��	�
������� May ����

� Paul Mukherjee Computer�aided Validation of Formal Speci�cations Software

Engineering Journal� pages �������� July ����
� P G Larsen and B S Hansen and H Brunn N Plat and H Toetenel and D

J Andrews and J Dawes and G Parkin and others Information technology �
Programming languages� their environments and system software interfaces � Vi�
enna Development Method � Speci�cation Language � Part �� Base language�
December ����

� The VDM Tool Group The IFAD VDM�SL Language Technical report� IFAD�
May ���� IFAD�VDM��

�� TM Brookes and JS Fitzgerald and PG Larsen Formal and Informal Speci��
cations of a secure System Component� Final Results in a Comparative Study In
Marie�Claude Gaudel and Jim Woodcock� editors� FME���� Industrial Bene�t and

Advances in Formal Methods� pages ������� Springer�Verlag� March ����

This article was processed using the LATEX macro package with LLNCS style

The copyright for this paper is held by AEROSPATIALE� It must not be reproduced without

written permission from AEROSPATIALE� Requests should be made to the �rst author of this
article� c� � AEROSPATIALE � �����

